ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-05
    Description: A new version of the AWI Coupled Prediction System is developed based on the Alfred Wegener Institute Climate Model v3.0. Both the ocean and the atmosphere models are upgraded or replaced, reducing the computation time by a factor of 5 at a given resolution. This allowed us to increase the ensemble size from 12 to 30, maintaining a similar resolution in both model components. The online coupled data assimilation scheme now additionally utilizes sea‐surface salinity and sea‐level anomaly as well as temperature and salinity profile observations. Results from the data assimilation demonstrate that the sea‐ice and ocean states are reasonably constrained. In particular, the temperature and salinity profile assimilation has mitigated systematic errors in the deeper ocean, although issues remain over polar regions where strong atmosphere‐ocean‐ice interaction occurs. One‐year‐long sea‐ice forecasts initialized on 1 January, 1 April, 1 July and 1 October from 2003 to 2019 are described. To correct systematic forecast errors, sea‐ice concentration from 2011 to 2019 is calibrated by trend‐adjusted quantile mapping using the preceding forecasts from 2003 to 2010. The sea‐ice edge raw forecast skill is within the range of operational global subseasonal‐to‐seasonal forecast systems, outperforming a climatological benchmark for about 2 weeks in the Arctic and about 3 weeks in the Antarctic. The calibration is much more effective in the Arctic: Calibrated sea‐ice edge forecasts outperform climatology for about 45 days in the Arctic but only 27 days in the Antarctic. Both the raw and the calibrated forecast skill exhibit strong seasonal variations.
    Description: Plain Language Summary: Ocean data sparseness and systematic model errors pose problems for the initialization of coupled seasonal forecasts, especially in polar regions. Our global forecast system follows a seamless approach with refined ocean resolution in the Arctic. The new version presented here features higher computational efficiency and utilizes more ocean and sea‐ice observations. Ice‐edge forecasts outperform a climatological benchmark for about 1 month, comparable to established systems.
    Description: Key Points: We describe an upgrade of the AWI Coupled Prediction System with new ocean and atmosphere models and more observations assimilated. Independent evaluations show advances in the new version on the analysis of the sea‐ice and ocean states against the old one. Calibrated sea‐ice edge forecasts outperform a climatological benchmark for around 1 month in both hemispheres.
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft
    Description: https://doi.org/10.5281/zenodo.6335383
    Description: https://github.com/FESOM/fesom2/releases/tag/AWI-CM3_v3.0
    Description: https://doi.org/10.5281/zenodo.6335498
    Description: https://oasis.cerfacs.fr/en/
    Description: https://doi.org/10.5281/zenodo.4905653
    Description: http://forge.ipsl.jussieu.fr/ioserver
    Description: https://doi.org/10.5281/zenodo.6335474
    Description: http://pdaf.awi.de/
    Description: https://doi.org/10.5281/zenodo.6481116
    Keywords: ddc:551.6 ; seamless sea ice forecast ; multivariate data assimilation ; forecast calibration ; spatial probability score
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Several independent measurements of warmseason soil moisture and surface atmospheric variables recorded at the ARM Southern Great Plains (SGP) research facility are used to estimate the terrestrial component of landatmosphere coupling (LAC) strength and its regional uncertainty. The observations reveal substantial variation in coupling strength, as estimated from three soil moisture measurements at a single site, as well as across six other sites having varied soil and land cover types. The observational estimates then serve as references for evaluating SGP terrestrial coupling strength in the Community Atmospheric Model coupled to the Community Land Model. These coupled model components are operated in both a freerunning mode and in a controlled configuration, where the atmospheric and land states are reinitialized daily, so that they do not drift very far from observations. Although the controlled simulation deviates less from the observed surface climate than its freerunning counterpart, the terrestrial LAC in both configurations is much stronger and displays less spatial variability than the SGP observational estimates. Preliminary investigation of vegetation leaf area index (LAI) substituted for soil moisture suggests that the overly strong coupling between model soil moisture and surface atmospheric variables is associated with too much evaporation from bare ground and too little from the vegetation cover. These results imply that model surface characteristics such as LAI, as well as the physical parameterizations involved in the coupling of the land and atmospheric components, are likely to be important sources of the problematical LAC behaviors.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN48412 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 21; 11,524-11,548; November 16, 2017
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-11
    Description: Heterogeneity in warm-season (May-August) land-atmosphere (LA) coupling is quantified with the long-time, multiple-station measurements from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program and the moderate-resolution imaging spectroradiometer (MODIS) satellite remote sensing at the Southern Great Plains (SGP). We examine the coupling strength at 7 additional locations with the same surface type (i.e., pasture/grassland) as the ARM SGP central facility (CF). To simultaneously consider multiple factors and consistently quantify their relative contributions, we apply a multiple linear regression method to correlate the surface evaporative fraction (EF) with near-surface soil moisture (SM) and leaf area index (LAI). The observations show moderate to weak terrestrial segment LA coupling with large heterogeneity across the ARM SGP domain in warm-season. Large spatial variabilities in the contributions from SM and LAI to the EF changes are also found. The coupling heterogeneities appear to be associated with differences in land use, anthropogenic activities, rooting depth, and soil type at different stations. Therefore, the complex LA interactions at the SGP cannot be well represented by those at the CF/E13 based on the metrics applied here. Overall, the LAI exerts more influence on the EF than does the SM due to its overwhelming impacts on the latent heat flux. This study complements previous studies based on measurements only from the CF and has important implications for modeling LA coupling in weather and climate models. The multiple linear regression provides a more comprehensive measure of the integrated impacts on LA coupling from several different factors.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN60272 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 15; 7867-7882
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...