ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (20)
Sammlung
Datenquelle
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2011-08-19
    Beschreibung: A comparative review of mineralogical, chemical, and chronological data on crystalline Apollo 16 impact melt rocks is presented. The use of such data to identify distinct impact melt complex is discussed, and 22 distinct impact melt bodies are identified. The recently detected group of feldspathic microporphyritic (FM) melt rocks was tested for chemical and isotopic homogeneity; instrumental neutron activation analysis and new Rb-Sr isotopic whole rock data indicate that FMs were probably not derived from a single impact melt sheet, but might be representative of the Descartes basement. Stratigraphical and chronological concepts for the geological development of the landing site are discussed, and a model is presented for the formation of the Cayley Plains and the Descartes formation.
    Schlagwort(e): LUNAR AND PLANETARY EXPLORATION
    Materialart: Fortschritte der Mineralogie (ISSN 0015-8186); 62; 269-301
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2011-08-19
    Beschreibung: The North Ray Crater Target Rock Consortium was formed to study a large number of rake samples collected at Apollo 16 stations 11 and 13 with comparative chemical, mineralogical, and chronological techniques in order to provide a larger data base for the discussion of lunar highland evolution in the vicinity of the Apollo 16 landing region. The present investigation is concerned with Rb-Sr and Sm-Nd isotopic analyses of a number of whole-rock samples of feldspathic microporhyritic (FM) impact melt, a sample type especially abundant among the North Ray crater (station 11) sample collection. Aspects of sample mineralogy and analytical procedures are discussed, taking into account FM impact melt rocks 6715 and 63538, intergranular impact melt rock 67775, subophitic impact melt rock 67747, subophitic impact melt rock 67559, and studies based on the utilization of electron microscopy and mass spectroscopy.
    Schlagwort(e): LUNAR AND PLANETARY EXPLORATION
    Materialart: Journal of Geophysical Research, Supplement (ISSN 0148-0227); 90; C431-C44
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2011-08-18
    Schlagwort(e): LUNAR AND PLANETARY EXPLORATION
    Materialart: Geochimica et Cosmochimica Acta; 46; July 198
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2013-08-31
    Beschreibung: Both the Sudbury Structure (SS) and the Witwatersrand Basin surrounding the Vredefort Structure (VS) host some of the most important base and precious metal deposits on earth. In both structures Precambrian igneous, sedimentary and volcanic rocks were affected by the structure forming process, either meteorite impact or endogenic explosion, or as some VS workers propose, by high strain tectonics. Besides these general features there are some geological and geophysical characteristics that are strikingly similar in both structures. There are, however, some obvious differences. Directly related to the structure forming processes are breccias in the footwall rocks of both structures. Pseudotachylite breccias occurring in both structures display great similarities. Chemical and physical characteristics of the pseudotachylites are similar in both structures. Both structures are characterized by overturned collar rocks, not evident everywhere around the SS. The VS is rimmed by an up or overturned collar of sediments and volcanics of the Witwatersrand, Ventersdorp and Transvaal Supergroups. Drilling information proved that the strata of the Witwatersrand Supergroup in the south of the VS are lying horizontally. Shockmetamorphic features such as planar microdeformations in rock forming minerals and shatter cones are present in both structures in the footwall rocks and in the SS also in the breccias of the OF. Both structures have large geophysical anomalies associated with them. In both structures the anomalies were interpreted as being caused by mafic-ultramafic complexes underlying the structures.
    Schlagwort(e): GEOPHYSICS
    Materialart: Lunar and Planetary Inst., Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality; p 42-43
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2013-08-31
    Beschreibung: The Vredefort Dome is located within and almost central to the Witwatersrand basin in its presently known extent. It exposes a central Archean granite core which is surrounded by a collar of supracrustal rocks. These collar rocks outline a strong polygonal geometry. The Archean core is comprised of two concentric zones, the Outer Granite Gneiss (OGG), and the core central Inlandsee Leucogranofels (ILG). The rocks of the inner core display granulite facies metamorphism, while the OGG is in amphibolite facies. The inner core is believed from recent drill hole information to be underlain by mafic and ultramafic gneisses, the extent of which cannot be assessed at present. A fairly broad zone of charnockites separates the OGG and ILG domains. This zone is characterized by a high concentration of pseudotachylite and ductile shearing. Whereas a number of other domical structures are located within or surrounding the Witwatersrand basin, the Vredefort structure is anomalous, in that it has: a partly polygonal geometry; extensive alkali intrusives in the northwestern sector; granophyre dykes (ring-dykes peripheral to the contact collar-basement and NW-SE or NE-SW trending dykes within the Archean basement); contact metamorphism of the collar supracrustal rocks; the overturning of collar supracrustals in the northern sectors; deformation phenomena widely regarded as representing shock metamorphism (pseudotachylite, (sub)planar microdeformation features in quartz, shatter cones and occurrences of high-P quartz polymorphs); a positive 30 mgal gravity anomaly; and high amplitude magnetic anomalies. Recent geophysical, structural and petrological evidence pertinent for the identification of the processes that led to the formation of the Vredefort structure are summarized.
    Schlagwort(e): GEOPHYSICS
    Materialart: Lunar and Planetary Inst., Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality; p 2-3
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2013-08-31
    Beschreibung: The formation of the Vredefort Dome, a structure in excess of 100 km in diameter and located in the approximate center of the Witwatersrand basin, is still the subject of lively geological controversy. It is widely accepted that its formation seems to have taken place in a single sudden event, herein referred to as the Vredefort event, accompanied by the release of gigantic amounts of energy. It is debated, however, whether this central event was an internal one, i.e., a cryptoexplosion triggered by volcanic or tectonic processes, or the impact of an extraterrestrial body. The results of this debate are presented.
    Schlagwort(e): GEOPHYSICS
    Materialart: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution; p 75-77
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2013-08-31
    Beschreibung: The Vredefort structure is a large domal feature about 110 km southeast of Johannesburg, South Africa, situated within and almost central to the large intracratonic Witwatersrand Basin. This structure consists of an Archean core of ca. 45 km in diameter, consisting largely of granitic gneiss, surrounded by a collar of metasedimentary and metavolcanic supracrustal rocks of the Dominian Group, Witwatersrand and Ventersdorp Supergroups, and Transvaal Sequence. The interpretation of images of the gravity and magnetic fields over Vredefort has permitted the delineation of several important features of the structure and of its environment. The outline of the collar strata is a prominent feature of both the gravity and the magnetic fields. The Vredefort structure shares this distinctive geometry with other structures (e.g., Manicouagan, Decaturville, Sierra Madera) of debated impact origin. In all these, successively older strata with steep outward dips are encountered while traversing inward to the center of the structure. A further attribute of these structures is the shortening of the outcrop of a particular stratigraphic unit compared to the original perimeter of that unit. To account for the geometric attributes of the Vredefort structure a mechanical scheme is required where there is radial movement of horizontal strata toward, with uplift in, the center of the Vredefort structure. Two models can be proposed: (1) one in which there is a rapid rise and violent disruption of cover rocks in response to expansion of a fluid accumulation; and (2) one in which there is, in contrast, a nonexplosive, quasi-Hertzian stress field resulting from a diapiric process. Both models can accommodate the geometry and structural components of Vredefort.
    Schlagwort(e): GEOPHYSICS
    Materialart: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution; p 3-4
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2013-08-31
    Beschreibung: The structure of the older-than-3.2-Ga Archean basement and Archean-to-Precambrian sedimentary/volcanic rocks (3.07 to ca. 2.2 Ga) in the center of the Witwatersrand Basin to the southwest of Johannesburg (South Africa) is dominated by the ca. 2.0-Ga megascopic Vredefort 'Dome' structure. The effect of the 'Vredefort event' is demonstrably large and is evident within a northerly arc of about 100 km radius around the granitic core of the structure. Northerly asymmetric overturning of the strata is observed within the first 17 km (strata is horizontal in the south), followed by a 40-km-wide rim synclinorium. Fold and fault structures (normal, reverse, and strike-slip) are locally as well as regionally concentrically arranged with respect to the northern and western sides of the structure. The unusual category of brittle deformation, the so-called 'shock deformation', observed in the collar strata has attracted worldwide attention over the past two decades. These deformation phenomena include the presence of coesite and stishovite, mylonites, and pseudotachylites, cataclasis at a microscopic scale, and the ubiquitous development of multiply striated joint surfaces (which include shatter cones, orthogonal, curviplanar, and conjugate fractures). The macroscopic to microscopic deformation features have led to the formulation of various hypotheses to account for the origin of the Vredefort structure: (1) tectonic hypotheses--deep crustal shear model, doming and N-directed thrust fault model, fold interference model, and diapir model; (2) the exogenous bolide impact hypothesis; and (3) the endogenous cryptoexplosion model.
    Schlagwort(e): GEOPHYSICS
    Materialart: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution; p 16-17
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2013-08-31
    Beschreibung: Planar microdeformations in quartz from basement or collar rocks of the Vredefort Dome have been cited for years as the main microtextural evidence for shock metamorphism in this structure. In addition, Schreyer describes feldspar recrystallization in rocks from the center of the Dome as the result of transformation of diaplectic glass, and Lilly reported the sighting of mosaicism in quartz. These textural observations are widely believed to indicate either an impact or an internally produced shock origin for the Vredefort Dome. Two types of (mostly sub) planar microdeformations are displayed in quartz grains from Vredefort rocks: (1) fluid inclusion trails, and (2) straight optical discontinuities that sometimes resemble lamellae. Both types occur as single features or as single or multiple sets in quartz grains. Besides qualitative descriptions of cleavage and recrystallization in feldspar and kinkbands in mica, no further microtextural evidence for shock metamorphism at Vredefort has been reported to date. Some 150 thin sections of Vredefort basement rocks were re-examined for potential shock and other deformation effects in all rock-forming minerals. This included petrographic study of two drill cores from the immediate vicinity of the center of the Dome. Observations recorded throughout the granitic core are given along with conclusions.
    Schlagwort(e): GEOPHYSICS
    Materialart: Lunar and Planetary Inst., Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality; p 152-153
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2013-08-31
    Beschreibung: Pseudotachylite (PT) from both the Sudbury structure in Ontario and the Vredefort Dome in South Africa have been widely cited as the result of shock (impact)-induced brecciation. In the scientific and popular literature PT has been described as shock melt or even as impact melt rock. In contrast, others have for years requested that a clarification of the definitions for PT and impact melt rock be pursued. We have suggested that, until that time when well-defined criteria for genetically different melt rock types (e.g., generated by impact or tectonic processes) will have been established, the term PT should only be used as a descriptive one and that, wherever genetic implications are discussed, other terms, such as impact melt (rock) or friction melt, should be applied. It is obvious that these suggestions are not only of value for the discussion of terrestrial melt rocks of controversial origin, but also apply to the characterization of melt veins in extraterrestrial materials. Important observations on Vredefort and Witwatersrand pseudotachylite are summarized.
    Schlagwort(e): GEOPHYSICS
    Materialart: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution; p 60-61
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...