ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (12)
  • 1
    Publication Date: 2011-08-24
    Description: The correlation is low between the occurrence of gas bubbles in the pulmonary artery, called venous gas emboli (VGE), and subsequent decompression illness (DCI). The correlation improves when a "grade" of VGE is considered; a zero to four categorical classification based on the intensity and duration of the VGE signal from a Doppler bubble detector. Additional insight about DCI might come from an analysis of the time course of the occurrence of VGE. Using the NASA Hypobaric Decompression Sickness Databank, we compared the time course of the VGE outcome between 322 subjects who exercised and 133 Doppler technicians who did not exercise to evaluate the role of physical activity on the VGE outcome and incidence of DCI. We also compared 61 subjects with VGE and DCI with 110 subjects with VGE but without DCI to identify unique characteristics about the time course of the VGE outcome to try to discriminate between DCI and no-DCI cases. The VGE outcome as a function of time showed a characteristic short lag, rapid response, and gradual recovery phase that was related to physical activity at altitude and the presence or absence of DCI. The average time for DCI symptoms in a limb occurred just before the time of the highest fraction of VGE in the pulmonary artery. It is likely, but not certain, that an individual will report a DCI symptom if VGE are detected early in the altitude exposure, the intensity or grade of VGE rapidly increases from a limb region, and the intensity or grade of VGE remains high.
    Keywords: Aerospace Medicine
    Type: Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc (ISSN 1066-2936); Volume 23; 3; 141-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: This communication extends a statistical analysis of forced-descent decompression sickness at altitude in exercising subjects (J Appl Physiol 1994; 76:2726-2734) with a data subset having an additional explanatory variable, rate of ascent. The original explanatory variables for risk-function analysis were environmental pressure of the altitude, duration of exposure, and duration of pure-O2 breathing before exposure; the best fit was consistent with the idea that instantaneous risk increases linearly as altitude exposure continues. Use of the new explanatory variable improved the fit of the smaller data subset, as indicated by log likelihood. Also, with ascent rate accounted for, replacement of the term for linear accrual of instantaneous risk by a term for rise and then decay made a highly significant improvement upon the original model (log likelihood increased by 37 log units). The authors conclude that a more representative data set and removal of the variability attributable to ascent rate allowed the rise-and-decay mechanism, which is expected from theory and observations, to become manifest.
    Keywords: Aerospace Medicine
    Type: Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc (ISSN 1066-2936); Volume 23; 4; 225-33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: BACKGROUND: Several previous studies indicated that exercise during prebreathe with 100% O2 decreased the incidence of hypobaric decompression sickness (DCS). We report a meta-analysis of these investigations combined with a new study in our laboratory to develop a statistical model as a predictive tool for DCS. HYPOTHESIS: Exercise during prebreathe increases N2 elimination in a theoretical 360-min half-time compartment decreasing the incidence of DCS. METHODS: A dose-response probability tissue ratio (TR) model with 95% confidence limits was created for two groups, prebreathe with exercise (n = 113) and resting prebreathe (n = 113), using nonlinear regression analysis with maximum likelihood optimization. RESULTS: The model predicted that prebreathe exercise would reduce the residual N2 in a 360-min half-time compartment to a level analogous to that in a 180-min compartment. This finding supported the hypothesis. The incidence of DCS for the exercise prebreathe group was significantly decreased (Chi-Square = 17.1, p 〈 0.0001) from the resting prebreathe group. CONCLUSIONS: The results suggested that exercise during prebreathe increases tissue perfusion and N2 elimination approximately 2-fold and markedly lowers the risk of DCS. Based on the model, the prebreathe duration may be reduced from 240 min to a predicted 91 min for the protocol in our study, but this remains to be verified. The model provides a useful planning tool to develop and test appropriate prebreathe exercise protocols and to predict DCS risks for astronauts.
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 68; 3; 199-204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Our hypothesis is that metabolic gases play a role in the initial explosive growth phase of bubble formation during hypobaric exposures. Models that account for optimal internal tensions of dissolved gases to predict the probability of occurrence of venous gas emboli were statistically fitted to 426 hypobaric exposures from National Aeronautics and Space Administration tests. The presence of venous gas emboli in the pulmonary artery was detected with an ultrasound Doppler detector. The model fit and parameter estimation were done by using the statistical method of maximum likelihood. The analysis results were as follows. 1) For the model without an input of noninert dissolved gas tissue tension, the log likelihood (in absolute value) was 255.01. 2) When an additional parameter was added to the model to account for the dissolved noninert gas tissue tension, the log likelihood was 251.70. The significance of the additional parameter was established based on the likelihood ratio test (P 〈 0.012). 3) The parameter estimate for the dissolved noninert gas tissue tension participating in bubble formation was 19. 1 kPa (143 mmHg). 4) The additional gas tissue tension, supposedly due to noninert gases, did not show an exponential decay as a function of time during denitrogenation, but it remained constant. 5) The positive sign for this parameter term in the model is characteristic of an outward radial pressure of gases in the bubble. This analysis suggests that dissolved gases other than N2 in tissues may facilitate the initial explosive bubble-growth phase.
    Keywords: Life Sciences (General)
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); Volume 84; 3; 1088-95
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: This minireview provides an overview of known and potential gender differences in physiological responses to spaceflight. The paper covers cardiovascular and exercise physiology, barophysiology and decompression sickness, renal stone risk, immunology, neurovestibular and sensorimotor function, nutrition, pharmacotherapeutics, and reproduction. Potential health and functional impacts associated with the various physiological changes during spaceflight are discussed, and areas needing additional research are highlighted. Historically, studies of physiological responses to microgravity have not been aimed at examining gender-specific differences in the astronaut population. Insufficient data exist in most of the discipline areas at this time to draw valid conclusions about gender-specific differences in astronauts, in part due to the small ratio of women to men. The only astronaut health issue for which a large enough data set exists to allow valid conclusions to be drawn about gender differences is orthostatic intolerance following shuttle missions, in which women have a significantly higher incidence of presyncope during stand tests than do men. The most common observation across disciplines is that individual differences in physiological responses within genders are usually as large as, or larger than, differences between genders. Individual characteristics usually outweigh gender differences per se.
    Keywords: Life Sciences (General)
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); Volume 91; 5; 2374-83
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: The presence of gas bubbles in the arterial circulation can occur from iatrogenic mishaps, cardiopulmonary bypass devices, or following decompression, e.g., in deep-sea or SCUBA diving or in astronauts during extravehicular activities (EVA). We have examined the pathophysiology of neurological decompression sickness in human subjects who developed a large number of small gas bubbles in the right side of the heart as a result of hypobaric exposures. In one case, gas bubbles were detected in the middle cerebral artery (MCA) and the subject developed neurological symptoms; a 'resting' patent foramen ovalae (PFO) was found upon saline contrast echocardiography. A PFO was also detected in another individual who developed Spencer Grade 4 precordial Doppler ultrasound bubbles, but no evidence was seen of arterialization of bubbles upon insonation of either the MCA or common carotid artery. The reason for this difference in the behavior of intracardiac bubbles in these two individuals is not known. To date, we have not found evidence of right-to-left shunting of bubbles through pulmonary vasculature. The volume of gas bubbles present following decompression is examined and compared with the number arising from saline contrast injection. The estimates are comparable.
    Keywords: AEROSPACE MEDICINE
    Type: NASA. Johnson Space Center, Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992), Volume 2; p 549-561
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: Circulating microbubbles (CMB) are frequently detected prior to the appearance of symptoms of Decompression Sickness (DCS). It is difficult to analyze the effect of CMB on symptoms due to differences in the time to detection of CMB. This paper uses survival analysis models to evaluate the risk of symptoms in the presence of CMB. Methods: Information on 81 exposures to an altitude of 6,400 m (6.5 psi) for a period of three hours, with simulated extravehicular activities, was examined. The presence or absence of CMB was included as a time dependent covariate of the Cox proportional hazards regression model. Using this technique, the subgroup of exposures with CMB was analyzed further. Mean (S.D.) time in minutes to onset of CMB and symptoms were 125 (63) and 165 (33) respectively, following the three hours exposure. The risk of symptoms (17/81) increased 14 times in the presence of CMB, after controlling for variations in time to detection of CMB. Further, the risk was lower when time to detection of CMB was greater than 60 minutes (risk ratio = 0.96; 95 percent confidence intervals = 0.94 - 0.99 0.99 P less than 0.01) compared to CMB before 60 minutes at altitude. Conclusions: Survival analysis showed that individual risk of DCS changes significantly due to variations in time to detection of CMB. This information is important in evaluating the risk of DCS in the presence of CMB.
    Keywords: AEROSPACE MEDICINE
    Type: Aerospace Medical Association, Aerospace Medical Association 63rd Annual Scientific Meeting Program; 1 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: The majority of extravehicular activities (EVAs) performed from the shuttle use a 10.2 psi staged decompression. The International Space Station (ISS) will operate at 14.7 psi, requiring crews to "campout" in the airlock at 10.2 psi. The constraints associated with campout (crew isolation, oxygen usage, and waste management), provided the rationale to develop a 2-hour prebreathe protocol from 14.7 psi. Previous studies on the affect of microgravity and exercise during prebreathe suggested the feasibility of this approach. Various combinations of adynamia (nonwalking subjects), prebreathe exercise doses, and space suit donning options (10.2 vs. 14.7 psi) were analyzed against timeline and consumable constraints. Prospective decompression sickness (DCS) and venous gas emboli (VGE) accept/reject criteria were defined from statistical analysis of historical DCS data, combined with risk management of DCS under ISS mission circumstances. Maximum operational DCS levels were defined based on protecting for EVA capability with two crew members at 95% confidence, throughout ISS lifetime (within the constraints of NASA DCS disposition policy JPG 1800.3). The accept / reject limits were adjusted for greater safety (including Grade IV VGE criteria) based on analysis of related medical factors. Monte-Carlo simulation was performed to design a closed sequential, multi-center laboratory trial, including the capability of rejecting the primary protocol and testing at least one alternate exercise dose, within the 2-hour prebreathe. The 2-hour protocol incorporates 0, breathing for 5 0 min at 14.7 psi, including 10 min dual cycle ergometry at 75%VO(2max). It requires an additional 30 minO2breathing during depress from 14.7 to 10.2 psi, followed by a 30-60 min suit donning break at 10.2 psi/26.5% O2. It concludes with a 40 min in-suit O2 prebreathe. The protocol would be accepted for operations, if the incidence of DCS was less than 15% and Grade IV VGE less than 20%, both at 95% confidence. The above protocol and accept/reject limits were implemented in a multi-center study.
    Keywords: Man/System Technology and Life Support
    Type: ASMA Annual Scientific Meeting; May 14, 2000 - May 18, 2000; Texas; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: It is desirable to know if astronauts produce venous gas emboli (VGE) as a result of their exposure to 4.3 psia during space walks. The current prototype in-suit Doppler (ISD) ultrasound bubble detector provides an objective assessment of decompression stress by monitoring for VGE. The NOAA Aquarius habitat and NASA Extreme Environment Mission Operations (NEEMO) series of dives provided an opportunity to assess the ability of the prototype ISDs to record venous blood flow and possibly detect VGE in the pulmonary artery. From July 16 to 29,2003, four aquanauts (two males and two females) donned the ISD for a 4 hr automated recording session, following excursion dives (up to 6hrs and 29 MSW below storage depth) from air saturation at 17 MSW. Doppler recordings for 32 excursion dives were collected. The recordings consisted of approximately 150 digital wave files. Each wave file contained 24 sec of recording for each min. A 1 - 4 Doppler Quality Score (DQS) was assigned to each wave file in 17 of the 32 records evaluated to date. A DQS of 1 indicates a poor flow signal and a score of 4 indicates an optimum signal. Only 23% of all wave files had DQSs considered adequate to detect low grade VGE (Spencer I-II). The distribution of DQS in 2,356 wave files is as follows: DQS 1-56%, DQS 2-21%, DQS 3-18% and DQS 4-5%. Six of the 17 records had false positive VGE (Spencer I-IV) detected in one or more wave files per dive record. The false positive VGE recordings are attributable to air entrainment associated with drinking (verified by control tests), and this observation is important as astronauts drink water during space walks. The current ISD design provides quality recordings only over a narrow range of chest anatomy.
    Keywords: Aerospace Medicine
    Type: 2004 Annual Scientific Meeting of the Undersea and Hyperbaric Medical Society; May 26, 2004 - May 29, 2004; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Astronauts conducting extravehicular activities undergo decompression to a lower ambient pressure, potentially resulting in gas bubble formation within the tissues and venous circulation. Additionally, exposure to microgravity produces fluid shifts within the body leading to cardiovascular deconditioning. A lower incidence of decompression illness in actual spaceflight compared with that in ground-based altitude chamber flights suggests that there is a possible interaction between microgravity exposure and decompression illness. The purpose of this study was to evaluate the cardiovascular and pulmonary effects of simulated hypobaric decompression stress using a tail suspension (head-down tilt) model of microgravity to produce the fluid shifts associated with weightlessness in conscious, chronically instrumented rats. Venous bubble formation resulting from altitude decompression illness was simulated by a 3-h intravenous air infusion. Cardiovascular deconditioning was simulated by 96 h of head-down tilt. Heart rate, mean arterial blood pressure, central venous pressure, left ventricular wall thickening and cardiac output were continuously recorded. Lung studies were performed to evaluate edema formation and compliance measurement. Blood and pleural fluid were examined for changes in white cell counts and protein concentration. Our data demonstrated that in tail-suspended rats subjected to venous air infusions, there was a reduction in pulmonary edema formation and less of a decrease in cardiac output than occurred following venous air infusion alone. Mean arterial blood pressure and myocardial wall thickening fractions were unchanged with either tail-suspension or venous air infusion. Heart rate decreased in both conditions while systemic vascular resistance increased. These differences may be due in part to a change or redistribution of pulmonary blood flow or to a diminished cellular response to the microvascular insult of the venous air embolization.
    Keywords: Aerospace Medicine
    Type: NASA/CR-96-207112 , NAS 1.26:207112 , Aviation, Space and Environmental Medicine; 67; 9; 835-840
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...