ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • 1
    Publication Date: 2019-07-19
    Description: In the rural western US free-tropospheric O3 has risen in recent years as a result of rising Asian emissions, deep stratospheric intrusions and more frequent wildfires. This increasing O3 trend combined with the high surface elevation of much of the western US, which aids mixing between boundary layer and free-troposphere, pose challenges in attaining the more stringent O3 National Ambient Air Quality Standard (NAAQS) at many western US rural surface sites. As such, the ability to identify various sources and transport mechanisms that contribute towards surface O3 is increasingly important. This paper analyzes vertical profiles of O3 from the Alpha Jet Atmospheric eXperiment (AJAX) over California and Nevada, ozonesondes from Trinidad Head, CA and tropospheric ozone profiles from the differential absorption lidar (DIAL) at the JPL Table Mountain Facility, CA. Surface O3 from the US EPA Clean air Status and Trends Network (CASNET) are used to discuss surface trends. GEOS-Chem determines the trends in regional O3 and assess the contributions of various sources on surface O3. And Realtime Air Quality Modeling System (RAQMS) is used to forecast and interpret free-tropospheric observations. Specifically we will address the following questions: What are the effects of the lowered NAAQS? Do we observe elevated O3 during 2012 at surface sites reported in previous studies? And if so, what are the causes? How variable is free-tropospheric O3 over California and Nevada? How frequently do we observe high O3 lamina in the free troposphere and what are the surface impacts?
    Keywords: Environment Pollution; Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN38262 , 2016 AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Halogens in the troposphere are increasingly recognized as playing an important role for atmospheric chemistry, and possibly climate. Bromine and iodine react catalytically to destroy ozone (O3), oxidize mercury, and modify oxidative capacity that is relevant for the lifetime of greenhouse gases. Most of the tropospheric O3 and methane (CH4) loss occurs at tropical latitudes. Here we report simultaneous measurements of vertical profiles of bromine oxide (BrO) and iodine oxide (IO) in the tropical and subtropical free troposphere (10degN to 40degS), and show that these halogens are responsible for 34% of the column-integrated loss of tropospheric O3. The observed BrO concentrations increase strongly with altitude (approx.3.4 pptv at 13.5 km), and are 2-4 times higher than predicted in the tropical free troposphere. BrO resembles model predictions more closely in stratospheric air. The largest model low bias is observed in the lower tropical transition layer (TTL) over the tropical eastern Pacific Ocean, and may reflect a missing inorganic bromine source supplying an additional 2.5-6.4 pptv total inorganic bromine (Bry), or model overestimated Bry wet scavenging. Our results highlight the importance of heterogeneous chemistry on ice clouds, and imply an additional Bry source from the debromination of sea salt residue in the lower TTL. The observed levels of bromine oxidize mercury up to 3.5 times faster than models predict, possibly increasing mercury deposition to the ocean. The halogen-catalyzed loss of tropospheric O3 needs to be considered when estimating past and future ozone radiative effects.
    Keywords: Meteorology and Climatology
    Type: NF1676L-20964 , Proceedings of the National Academy of Sciences (e-ISSN 1091-6490); 112; 30; 9281-9286
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...