ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (11)
Collection
Source
Years
  • 1
    Publication Date: 2021-02-08
    Description: Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical–chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity–ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-21
    Description: Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programmes. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulphide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Summary: The relationship between community structure and the functioning of ecosystems is the subject of ongoing debate. Biological or functional trait-based approaches that capture life strategy, morphology and behavioural characteristics have received far less attention than taxonomic diversity in this context, despite their more intuitive link to ecosystem functioning. Macrophyte primary production underpins aquatic food webs, regulates benthic and pelagic ecosystems and is a key aspect of the global carbon cycle. This study spans a range of aquatic biomes across Europe and aims to examine potential for predicting primary production of macrophyte communities based on the functional traits of species and identify the traits that are the most informative indicators of macrophyte production. Macrophyte primary production was assessed based on the oxygen production of the whole community, linked to biomasses of selected biological traits derived of its component species and analysed using the novel boosted regression trees modelling technique. Results showed that functional traits derived from macrophyte community data explained most of the variation in primary production of macrophyte communities without the need to incorporate environmental data on the habitats. Macrophyte primary production was influenced by a combination of tolerance, morphology and life habit traits; however tolerance traits contributed most of variability in macrophyte primary production when all traits were analysed jointly. This study also showed the existence of trait clustering as the studied trait categories were not fully independent; strong interlinkages between and within trait categories emerged. Our study suggests that functional trait analysis captures different aspects of ecosystem functioning and thereby enables assessing primary production of macrophyte communities over geographically distinct areas without extensive taxonomic and environmental data. This could result in a novel framework through which a simplification of the general procedure of production estimations and comparisons across environmental gradients can be achieved.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-05
    Description: The Harris mud crab (Rhithropanopeus harrisii) arrived to the Baltic Sea in 1936. It was not until the late 2000es when the species considerably expanded its distribution area towards the northern Baltic Sea and formed a viable and expanding population. This introduction represents an appearance of a completely new function, as such larger epibenthic predators were previously missing from north-eastern Baltic Sea. In order to assess potential impacts of the crab to the invaded ecosystem, knowledge of the crab habitat preferences is required. This study experimentally evaluated the habitat occupancy of the Harris mud crab. The crab stayed more in vegetated boulders compared to unvegetated boulders or sandy habitats. There was an interactive effect between the presence of prey and crab population density with prey availability increasing the crab's affinity towards less favored habitats when population densities were low. Increased aggression between crab individuals increased their affinity towards otherwise less occupied habitats. Less favored habitats were typically inhabited by smaller individuals and presence of prey increased occupancy of some habitats for larger crabs. The experiment demonstrated that the crab may inhabit a large variety of habitats with stronger affinity towards boulder fields covered with the brown macroalga Fucus vesiculosus. This implies stronger impact of crab in such habitats in the invaded ecosystem.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: The Harris mud crab Rhithropanopeus harrisii recently expanded into much of the Baltic Sea. This invasion is expected to have significant effects on the structure and functioning of benthic ecosystems due to the lack of native crabs. Habitat type potentially modulates the effects as crabs are expected to behave differently in different habitats. In this study we experimentally evaluated the effect of R. harrisii on the species composition and dominance structure of shallow water meiobenthos within common habitat types of the north-eastern Baltic Sea. Among the studied environmental variables R. harrisii had by far the strongest effects on meiobenthos. The effects of R. harrisii varied among different habitats with the crab mostly modifying taxonomic composition and species abundances of meiobenthic communities on unvegetated soft bottom sediments. Our experiment also showed that boulders provided shelter for R. harrisii and thereby reduced their burrowing activity and effects on the adjacent soft bottom meiobenthos.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Description: The round goby Neogobius melanostomus has successfully invaded much of the Baltic Sea. However, very little is known about the feeding habits of the species in this newly invaded environment. Our laboratory experiment showed that the round goby is able to effectively consume a diverse variety of prey when given the choice between dominant benthic invertebrates: bivalves (Macoma balthica, Mytilus trossulus, Cerastoderma glaucum) and amphipods (Gammarus spp.). In contrast consumption of the gastropod (Theodoxus fluviatilis) was very low in all provided combinations. Nevertheless, the round goby had no statistically significant preference towards any of the prey taxa. The round goby exhibited size-specific consumption of M.trossulus, with smaller individuals being consumed at least 25% more than larger size classes. In addition elevated prey density resulted in higher consumption of prey by the fish. The broad diet suggests that shifting densities of benthic invertebrate prey has little influence on the further dispersal of the round goby in the Baltic Sea as the species is potentially able to switch between several native invertebrate taxa. This opportunistic feeding behaviour has likely favoured this invasion and ensured success of the species in the invaded ecosystem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-12-21
    Description: Within the COST action EMBOS (European Marine Biodiversity Observatory System) the degree and variation of the diversity and densities of soft-bottom communities from the lower intertidal or the shallow subtidal was measured at 28 marine sites along the European coastline (Baltic, Atlantic, Mediterranean) using jointly agreed and harmonized protocols, tools and indicators. The hypothesis tested was that the diversity for all taxonomic groups would decrease with increasing latitude. The EMBOS system delivered accurate and comparable data on the diversity and densities of the soft sediment macrozoobenthic community over a large-scale gradient along the European coastline. In contrast to general biogeographic theory, species diversity showed no linear relationship with latitude, yet a bell-shaped relation was found. The diversity and densities of benthos were mostly positively correlated with environmental factors such as temperature, salinity, mud and organic matter content in sediment, or wave height, and related with location characteristics such as system type (lagoons, estuaries, open coast) or stratum (intertidal, subtidal). For some relationships, a maximum (e.g. temperature from 15–20°C; mud content of sediment around 40%) or bimodal curve (e.g. salinity) was found. In lagoons the densities were twice higher than in other locations, and at open coasts the diversity was much lower than in other locations. We conclude that latitudinal trends and regional differences in diversity and densities are strongly influenced by, i.e. merely the result of, particular sets and ranges of environmental factors and location characteristics specific to certain areas, such as the Baltic, with typical salinity clines (favouring insects) and the Mediterranean, with higher temperatures (favouring crustaceans). Therefore, eventual trends with latitude are primarily indirect and so can be overcome by local variation of environmental factors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-06
    Description: Little is known about how organisms might respond to multiple climate stressors and this lack of knowledge limits our ability to manage coastal ecosystems under contemporary climate change. Ecological models provide managers and decision makers with greater certainty that the systems affected by their decisions are accurately represented. In this study Boosted Regression Trees modelling was used to relate the cover of submerged aquatic vegetation to the abiotic environment in the brackish Baltic Sea. The analyses showed that the majority of the studied submerged aquatic species are most sensitive to changes in water temperature, current velocity and winter ice scour. Surprisingly, water salinity, turbidity and eutrophication have little impact on the distributional pattern of the studied biota. Both small and large scale environmental variability contributes to the variability of submerged aquatic vegetation. When modelling species distribution under the projected influences of climate change, all of the studied submerged aquatic species appear to be very resilient to a broad range of environmental perturbation and biomass gains are expected when seawater temperature increases. This is mainly because vegetation develops faster in spring and has a longer growing season under the projected climate change scenario.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: Predictive species distribution models are mostly based on statistical dependence between environmental and distributional data and therefore may fail to account for physiological limits and biological interactions that are fundamental when modelling species distributions under future climate conditions. Here, we developed a state-of-the-art method integrating biological theory with survey and experimental data in a way that allows us to explicitly model both physical tolerance limits of species and inherent natural variability in regional conditions and thereby improve the reliability of species distribution predictions under future climate conditions. By using a macroalga-herbivore association (Fucus vesiculosus - Idotea balthica) as a case study, we illustrated how salinity reduction and temperature increase under future climate conditions may significantly reduce the occurrence and biomass of these important coastal species. Moreover, we showed that the reduction of herbivore occurrence is linked to reduction of their host macroalgae. Spatial predictive modelling and experimental biology have been traditionally seen as separate fields but stronger interlinkages between these disciplines can improve species distribution projections under climate change. Experiments enable qualitative prior knowledge to be defined and identify cause-effect relationships, and thereby better foresee alterations in ecosystem structure and functioning under future climate conditions that are not necessarily seen in projections based on non-causal statistical relationships alone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: Eutrophication is a serious threat to aquatic ecosystems globally with pronounced negative effects in the Baltic and other semi-enclosed estuaries and regional seas, where algal growth associated with excess nutrients causes widespread oxygen free “dead zones” and other threats to sustainability. Decades of policy initiatives to reduce external (land-based and atmospheric) nutrient loads have so far failed to control Baltic Sea eutrophication, which is compounded by significant internal release of legacy phosphorus (P) and biological nitrogen (N) fixation. Farming and harvesting of the native mussel species (Mytilus edulis/trossulus) is a promising internal measure for eutrophication control in the brackish Baltic Sea. Mussels from the more saline outer Baltic had higher N and P content than those from either the inner or central Baltic. Despite their relatively low nutrient content, harvesting farmed mussels from the central Baltic can be a cost-effective complement to land-based measures needed to reach eutrophication status targets and is an important contributor to circularity. Cost effectiveness of nutrient removal is more dependent on farm type than mussel nutrient content, suggesting the need for additional development of farm technology. Furthermore, current regulations are not sufficiently conducive to implementation of internal measures, and may constitute a bottleneck for reaching eutrophication status targets in the Baltic Sea and elsewhere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...