ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
Collection
Years
  • 1
    Publication Date: 2019-07-13
    Description: Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preeminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN8984 , Journal of Geophysical Research: Atmospheres; 117; D19; D19108
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 3 (4). pp. 509-515.
    Publication Date: 2016-06-15
    Description: A radiocarbon-calibrated box model for today's ocean suggests that a lag of about 1750 years should exist between the arrival of the midpoint of the deglaciation 18O signal in the deep Atlantic Ocean and its arrival in the deep Pacific Ocean. In order to assess the actual lag, we have carried out accelerator radiocarbon measurements on two cores from the Atlantic Ocean and one core from the Pacific Ocean. Although the results are not definitive, there is a suggestion that the actual time lag was about 1000 years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Highlights • Five new authigenic Nd isotope records from the mid-depth Southwest Atlantic. • The Holocene εNd depth gradient is indicative of the different water masses. • No Nd isotope depth gradient during the last glacial and early deglaciation. • Nd end member properties of Antarctic Intermediate Water potentially changed by dust. • Combination of C and εNd yield improved constraints on glacial water mass boundary. Abstract Antarctic Intermediate Water (AAIW) plays a central role in the Atlantic Meridional Overturning Circulation (AMOC) as the return flow of Northern Sourced Water (NSW) and is therefore of significant importance for the global climate. Past variations of the boundary between AAIW and NSW have been extensively investigated, yet available results documenting the prevailing depth of this boundary and the southern extent of NSW during the last ice age remain ambiguous. Here, we present five new timeseries focusing on the authigenic neodymium isotope signal in sediment cores retrieved from the Southwest Atlantic covering the past 25,000 years. The sites are situated along the southern Brazil Margin and form a bathymetric transect ranging between 1000 and 3000 m water depth, encompassing the modern water mass boundaries of AAIW and NSW and therefore allow their reconstruction since the Last Glacial Maximum (LGM). The new Nd isotope records show little change between the LGM and early deglaciation as well as relatively homogeneous values over the full depth range of the cores during these times. These results strongly contrast with epibenthic foraminiferal stable carbon isotope records ( C) from the same sites which exhibit highest glacial values at mid-depths, presumably related to NSW mixing into southern sourced water. We propose that the discrepancy between these two independent water mass proxies is partly related to changes in Nd end member properties of glacial AAIW. The combination of elevated glacial dust fluxes and, as a result, sustained export productivity caused high sinking particle flux in the western South Atlantic, where AAIW is forming. Higher particle flux would have increased the removal (scavenging) of Nd from shallow waters thus reducing the Nd concentration and overprinting the isotopic signature of the glacial AAIW end member. Only under consideration of changes in Nd end member properties along with non-conservative processes such as remineralization of organic matter influencing past seawater C can we reconcile the water mass reconstructions from both proxies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...