ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (20)
Collection
Years
  • 1
    Publication Date: 2019-07-13
    Description: Neocortical neurons arise from a pseudostratified ventricular epithelium (PVE) that lies within the ventricular zone (VZ) at the margins of the embryonic cerebral ventricles. We examined the effects of fibroblast growth factor-2 (FGF-2) and 1-octanol on cell output behavior of the PVE in explants of the embryonic mouse cerebral wall. FGF-2 is mitogenic and 1-octanol antimitogenic in the PVE. Whereas all postmitotic cells migrate out of the VZ in vivo, in the explants some postmitotic cells remain within the VZ. We refer to these cells as the indeterminate or I fraction, because they neither exit from the VZ nor reenter S phase as part of the proliferative (P) fraction. They are considered to be either in an extremely prolonged G(1) phase, unable to pass the G(1)/S transition, or in the G(0) state. The I fate choice is modulated by both FGF-2 and 1-octanol. FGF-2 decreased the I fraction and increased the P fraction. In contrast, 1-octanol increased the I fraction and nearly eliminated the P fraction. The effects of FGF-2 and 1-octanol were developmentally regulated, in that they were observed in the developmentally advanced lateral region of the cerebral wall but not in the medial region. Copyright 2002 Wiley-Liss, Inc.
    Keywords: Life Sciences (General)
    Type: Journal of neuroscience research (ISSN 0360-4012); 69; 6; 714-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The neurons of the neocortex are generated over a 6 day neuronogenetic interval that comprises 11 cell cycles. During these 11 cell cycles, the length of cell cycle increases and the proportion of cells that exits (Q) versus re-enters (P) the cell cycle changes systematically. At the same time, the fate of the neurons produced at each of the 11 cell cycles appears to be specified at least in terms of their laminar destination. As a first step towards determining the causal interrelationships of the proliferative process with the process of laminar specification, we present a two-pronged approach. This consists of (i) a mathematical model that integrates the output of the proliferative process with the laminar fate of the output and predicts the effects of induced changes in Q and P during the neuronogenetic interval on the developing and mature cortex and (ii) an experimental system that allows the manipulation of Q and P in vivo. Here we show that the predictions of the model and the results of the experiments agree. The results indicate that events affecting the output of the proliferative population affect both the number of neurons produced and their specification with regard to their laminar fate.
    Keywords: Life Sciences (General)
    Type: Cerebral cortex (New York, N.Y. : 1991) (ISSN 1047-3211); 13; 6; 592-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The output potential of proliferating populations in either the developing or the adult nervous system is critically dependent on the length of the cell cycle (T(c)) and the size of the proliferating population. We developed a new approach for analyzing the cell cycle, the 'Saturate and Survive Method' (SSM), that also reveals the dynamic behaviors in the proliferative population and estimates of the size of the proliferating population. We used this method to analyze the proliferating population of the adult dentate gyrus in 60 day old mice of two inbred strains, C57BL/6J and BALB/cByJ. The results show that the number of cells labeled by exposure to BUdR changes dramatically with time as a function of the number of proliferating cells in the population, the length of the S-phase, cell division, the length of the cell cycle, dilution of the S-phase label, and cell death. The major difference between C57BL/6J and BALB/cByJ mice is the size of the proliferating population, which differs by a factor of two; the lengths of the cell cycle and the S-phase and the probability that a newly produced cell will die within the first 10 days do not differ in these two strains. This indicates that genetic regulation of the size of the proliferating population is independent of the genetic regulation of cell death among those newly produced cells. The dynamic changes in the number of labeled cells as revealed by the SSM protocol also indicate that neither single nor repeated daily injections of BUdR accurately measure 'proliferation.'.
    Keywords: Life Sciences (General)
    Type: Brain research. Developmental brain research (ISSN 0165-3806); 134; 2-Jan; 77-85
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Variations in the structure of the neocortex induced by single gene mutations may be extreme or subtle. They differ from variations in neocortical structure encountered across and within species in that these "normal" structural variations are adaptive (both structurally and behaviorally), whereas those associated with disorders of development are not. Here we propose that they also differ in principle in that they represent disruptions of molecular mechanisms that are not normally regulatory to variations in the histogenetic sequence. We propose an algorithm for the operation of the neuronogenetic sequence in relation to the overall neocortical histogenetic sequence and highlight the restriction point of the G1 phase of the cell cycle as the master regulatory control point for normal coordinate structural variation across species and importantly within species. From considerations based on the anatomic evidence from neocortical malformation in humans, we illustrate in principle how this overall sequence appears to be disrupted by molecular biological linkages operating principally outside the control mechanisms responsible for the normal structural variation of the neocortex. MRDD Research Reviews 6:22-33, 2000. Copyright 2000 Wiley-Liss, Inc.
    Keywords: Life Sciences (General)
    Type: Mental retardation and developmental disabilities research reviews (ISSN 1080-4013); 6; 1; 22-33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.
    Keywords: Life Sciences (General)
    Type: Development and psychopathology (ISSN 0954-5794); 11; 3; 395-417
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Neuronogenesis in the pseudostratified ventricular epithelium is the initial process in a succession of histogenetic events which give rise to the laminate neocortex. Here we review experimental findings in mouse which support the thesis that the restriction point of the G1 phase of the cell cycle is the critical point of regulation of the overall neuronogenetic process. The neuronogenetic interval in mouse spans 6 days. In the course of these 6 days the founder population and its progeny execute 11 cell cycles. With each successive cycle there is an increase in the fraction of postmitotic cells which leaves the cycle (the Q fraction) and also an increase in the length of the cell cycle due to an increase in the length of the G1 phase of the cycle. Q corresponds to the probability that postmitotic cells will exit the cycle at the restriction point of the G1 phase of the cell cycle. Q increases non-linearly, but the rate of change of Q with cycle (i.e., the first derivative) over the course of the neuronogenetic interval is a constant, k, which appears to be set principally by cell internal mechanisms which are species specific. Q also seems to be modulated, but at low amplitude, by a balance of mitogenic and antimitogenic influences acting from without the cell. We suggest that intracellular signal transduction systems control a general advance of Q during development and thereby determine the general developmental plan (i.e., cell number and laminar composition) of the neocortex and that external mitogens and anti-mitogens modulate this advance regionally and temporally and thereby produce regional modifications of the general plan.
    Keywords: Life Sciences (General)
    Type: Neurochemical research (ISSN 0364-3190); 24; 4; 497-506
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Neurons destined for each region of the neocortex are known to arise approximately in an "inside-to-outside" sequence from a pseudostratified ventricular epithelium (PVE). This sequence is initiated rostrolaterally and propagates caudomedially. Moreover, independently of location in the PVE, the neuronogenetic sequence in mouse is divisible into 11 cell cycles that occur over a 6 d period. Here we use a novel "birth hour" method that identifies small cohorts of neurons born during a single 2 hr period, i.e., 10-20% of a single cell cycle, which corresponds to approximately 1.5% of the 6 d neuronogenetic period. This method shows that neurons arising with the same cycle of the 11 cycle sequence in mouse have common laminar fates even if they arise from widely separated positions on the PVE (neurons of fields 1 and 40) and therefore arise at different embryonic times. Even at this high level of temporal resolution, simultaneously arising cells occupy more than one cortical layer, and there is substantial overlap in the distributions of cells arising with successive cycles. We demonstrate additionally that the laminar representation of cells arising with a given cycle is little if at all modified over the early postnatal interval of histogenetic cell death. We infer from these findings that cell cycle is a neuronogenetic counting mechanism and that this counting mechanism is integral to subsequent processes that determine cortical laminar fate.
    Keywords: Life Sciences (General)
    Type: The Journal of neuroscience : the official journal of the Society for Neuroscience (ISSN 0270-6474); 19; 23; 10357-71
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Snell dwarf mouse (Pit1dw-J homozygote) has a mutation in the Pit1 gene that prevents the normal formation of the anterior pituitary. In neonates and adults there is almost complete absence of growth hormone (GH), prolactin (PRL), thyroxin (T4), and thyroid-stimulating hormone (TSH). Since these hormones have been suggested to play a role in normal development of the central nervous system (CNS), we have investigated the effects of the Pit1dw-J mutation on the cerebellum and hippocampal formation. In the cerebellum, there were abnormalities of both foliation and lamination. The major foliation anomalies were 1) changes in the relative size of specific folia and also the proportional sizes of the anterior vs posterior cerebellum; and 2) the presence of between one and three microfolia per half cerebellum. The microfolia were all in the medial portion of the hemisphere in the caudal part of the cerebellum. Each microfolium was just rostral to a normal fissure and interposed between the fissure and a normal gyrus. Lamination abnormalities included an increase in the number of single ectopic granule cells in the molecular layer in both cerebellar vermis (86%) and hemisphere (40%) in comparison with the wild-type mouse. In the hippocampus of the Pit1dw-J homozygote mouse, the number of pyramidal cells was decreased, although the width of the pyramidal cell layer throughout areas CA1-CA3 appeared to be normal, but less densely populated than in the wild-type mouse. Moreover, the number of granule cells that form the granule cell layer was decreased from the wild-type mouse and some ectopic granule cells (occurring both as single cells and as small clusters) were observed in the innermost portion of the molecular layer. The abnormalities observed in the Pit1dw-J homozygote mouse seem to be caused by both direct and indirect effects of the deficiency of TSH (or T4), PRL, or GH rather than by a direct effect of the deletion of Pit1.
    Keywords: Life Sciences (General)
    Type: The Journal of comparative neurology (ISSN 0021-9967); 400; 3; 363-74
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Development of the neocortex of the trisomy 16 (Ts16) mouse, an animal model of Down syndrome (DS), is characterized by a transient delay in the radial expansion of the cortical wall and a persistent reduction in cortical volume. Here we show that at each cell cycle during neuronogenesis, a smaller proportion of Ts16 progenitors exit the cell cycle than do control, euploid progenitors. In addition, the cell cycle duration was found to be longer in Ts16 than in euploid progenitors, the Ts16 growth fraction was reduced, and an increase in apoptosis was observed in both proliferative and postmitotic zones of the developing Ts16 neocortical wall. Incorporation of these changes into a model of neuronogenesis indicates that they are sufficient to account for the observed delay in radial expansion. In addition, the number of neocortical founder cells, i.e., precursors present just before neuronogenesis begins, is reduced by 26% in Ts16 mice, leading to a reduction in overall cortical size at the end of Ts16 neuronogenesis. Thus, altered proliferative characteristics during Ts16 neuronogenesis result in a delay in the generation of neocortical neurons, whereas the founder cell deficit leads to a proportional reduction in the overall number of neurons. Such prenatal perturbations in either the timing of neuron generation or the final number of neurons produced may lead to significant neocortical abnormalities such as those found in DS.
    Keywords: Life Sciences (General)
    Type: The Journal of neuroscience : the official journal of the Society for Neuroscience (ISSN 0270-6474); 20; 11; 4156-64
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Neuronogenesis in the neocortical pseudostratified ventricular epithelium (PVE) is initiated rostrolaterally and progresses caudo-medially as development progresses. Here we have measured the cytokinetic parameters and the fractional neuronal output parameter, Q, of laterally located early-maturing regions over the principal embryonic days (E12-E15) of neocortical neuronogenesis in the mouse. These measures are compared with ones previously made of a medial, late-maturing portion of the PVE. Laterally, as medially, the duration of the neuronogenetic interval is 6 days and comprises 11 integer cell cycles. Also, in both lateral and medial areas the length of G1 phase (TG1) increases nearly 4-fold and is the only cell cycle parameter to change. Q progresses essentially identically laterally and medially with respect to the succession of integer cell cycles. Most importantly, from E12 to E13 there is a steeply declining lateral to medial gradient in TG1. The gradient is due both to the lateral to medial graded stage of neuronogenesis and to the stepwise increase in TG1 with each integer cycle during the neuronogenetic interval. To our knowledge this gradient in TG1 of the cerebral PVE is the first cell biological gradient to be demonstrated experimentally in such an extensive proliferative epithelial sheet. We suggest that this gradient in TG1 is the cellular mechanism for positionally encoding a protomap of the neocortex within the PVE.
    Keywords: Life Sciences (General)
    Type: Cerebral cortex (New York, N.Y. : 1991) (ISSN 1047-3211); 7; 7; 678-89
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...