ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
  • 2
    Publication Date: 2019-07-13
    Description: The output potential of proliferating populations in either the developing or the adult nervous system is critically dependent on the length of the cell cycle (T(c)) and the size of the proliferating population. We developed a new approach for analyzing the cell cycle, the 'Saturate and Survive Method' (SSM), that also reveals the dynamic behaviors in the proliferative population and estimates of the size of the proliferating population. We used this method to analyze the proliferating population of the adult dentate gyrus in 60 day old mice of two inbred strains, C57BL/6J and BALB/cByJ. The results show that the number of cells labeled by exposure to BUdR changes dramatically with time as a function of the number of proliferating cells in the population, the length of the S-phase, cell division, the length of the cell cycle, dilution of the S-phase label, and cell death. The major difference between C57BL/6J and BALB/cByJ mice is the size of the proliferating population, which differs by a factor of two; the lengths of the cell cycle and the S-phase and the probability that a newly produced cell will die within the first 10 days do not differ in these two strains. This indicates that genetic regulation of the size of the proliferating population is independent of the genetic regulation of cell death among those newly produced cells. The dynamic changes in the number of labeled cells as revealed by the SSM protocol also indicate that neither single nor repeated daily injections of BUdR accurately measure 'proliferation.'.
    Keywords: Life Sciences (General)
    Type: Brain research. Developmental brain research (ISSN 0165-3806); 134; 2-Jan; 77-85
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.
    Keywords: Life Sciences (General)
    Type: Development and psychopathology (ISSN 0954-5794); 11; 3; 395-417
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Two S-phase markers for in vivo studies of cell proliferation in the developing central nervous system, tritiated thymidine ((3)H-TdR) and bromodeoxyuridine (BUdR), were compared using double-labeling techniques in the developing mouse cortex at embryonic day 14 (E14). The labeling efficiencies and detectability of the two tracers were approximately equivalent, and there was no evidence of significant tracer interactions that depend on order of administration. For both tracers, the loading time needed to label an S-phase cell to detectability is estimated at 〈0.2 h shortly after the injection of the label, but, as the concentration of the label falls, it increases to approximately 0.65 h after about 30 min. Thereafter, cells that enter the S-phase continue to become detectably labeled for approximately 5-6 h. The approximate equivalence of these two tracers was exploited to observe directly the numbers and positions of nuclei entering (labeled with the second tracer only) and leaving (labeled with the first tracer only) the S-phase. As expected, the numbers of nuclei entering and leaving the S-phase both increased as the interval between the two injections lengthened. Also, nuclei leaving the S-phase rapidly move towards the ventricular surface during G2, but, unexpectedly, the distribution of the entering nuclei does not differ significantly from the distribution of the nuclei in the S-phase. This indicates that: (1) the extent and rate of abventricular nuclear movement during G1 is variable, such that not all nuclei traverse the entire width of the ventricular zone, and (2) interkinetic nuclear movements are minimal during S-phase. Copyright 2000 S. Karger AG, Basel.
    Keywords: Life Sciences (General)
    Type: Developmental neuroscience (ISSN 0378-5866); 22; 2-Jan; 44-55
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We have analyzed clonal cell proliferation in the ventricular zone (VZ) of the early developing mouse neocortex with a replication-incompetent retrovirus encoding human placental alkaline phosphatase (AP). The retrovirus was injected into the lateral ventricles on embryonic day 11 (E11), i.e., at the onset of neuronogenesis. Three days postinjection, on E14, a total of 259 AP-labeled clones of various sizes were found in 7 fetal brains. There are approximately 7 cell cycles between E11 and E14 (), and there is a 1-2 cell cycle delay between retroviral injection and the production of a retrovirally labeled "founder" cell; thus, we estimate that the "age" of the clones was about 5-6 cell cycles. Almost one-half of the clones (48.3%) identified were pure proliferating clones containing cells only in the VZ. Another 18.5% contained both proliferating and postproliferative cells, and 33.2% contained only postproliferative cells. It was striking that over 90% of the clonally related proliferating cells occurred in clusters of two or more apparently contiguous cells, and about 73% of the proliferating cells occurred in clusters of three or more cells. Regardless of the number of cells in the clone, these clusters were tightly packed and confined to a single level of the VZ. This clustering of proliferating cells indicates that clonally related cells maintain neighbor-neighbor relationships as they undergo interkinetic nuclear migration and progress through several cell cycles, and, as a result, the ventricular zone is a mosaic of small clusters of clonally related and synchronously cycling cells. In addition, cells in the intermediate zone and the cortical plate were also frequently clustered, indicating that they became postproliferative at a similar time and that the output of the VZ is influenced by its mosaic structure.
    Keywords: Life Sciences (General)
    Type: The Journal of neuroscience : the official journal of the Society for Neuroscience (ISSN 0270-6474); 17; 6; 2088-100
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We have measured the amount of variation in the length of the cell cycle for cells in the pseudostratified ventricular epithelium (PVE) of the developing cortex of mice on embryonic day 14. Our measurements were made in three cortical regions (i.e., the neocortex, archicortex, and periarchicortex) using three different methods: the cumulative labeling method (CLM), the percent labeled mitoses (PLM) method, and a comparison of the time needed for the PLM to ascend from 0 to 100% with the time needed for the PLM to descend from 100 to 0%. These 3 different techniques provide different perspectives on the cytokinetic parameters. Theoretically, CLM gives an estimate for a maximum value of the total length of the cell cycle (TC), whereas PLM gives an estimate of a minimum value of TC. The difference between these two estimates indicates that the range for TC is +/-1% of the mean TC for periarchicortex, +/-7% for neocortex, and +/-8% for archicortex. This was confirmed by a lengthening of the PLM descent time in comparison with its ascent time. The sharpness of the transitions and the flatness of the plateau of the PLM curves indicate that 99% of the proliferating cells are within this narrow estimated range for TC; hence, only approximately 1% deviate outside of a relatively restricted range from the average TC of the population. In the context of the possible existence within the cortical PVE of two populations with markedly dissimilar cell cycle kinetics from the mean, one such population must comprise approximately 99% of the total population, and the other, if it exists, is only approximately 1% of the total. This seems to be true for all three cortical regions. The narrow range of TC indicates a homogeneity in the cell cycle length for proliferating cells in three different cortical regions, despite the fact that progenitor cells of different lineages may be present. It further predicts the existence of almost synchronous interkinetic nuclear movements of the proliferating cells in the ventricular zone during early development of the cerebral cortex.
    Keywords: Life Sciences (General)
    Type: The Journal of neuroscience : the official journal of the Society for Neuroscience (ISSN 0270-6474); 17; 6; 2079-87
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Neuronogenesis during posthatching development of the procerebrum of the terrestrial snail Helix lucorum was analyzed using bromodeoxyuridine immunohistochemistry to label proliferating cells. Comparison of the distribution of labeled cells in a series of animals which differed in age at the time of incubation with bromodeoxyuridine, in survival time after incubation, and in age at sacrifice reveals a clear pattern and developmental sequence in neuron origin. First, the proliferating cells are located only at the apical portion of the procerebrum. Second, cells which are produced at any particular age remain, for the most part, confined to a single layer in the procerebrum. Third, as development proceeds, each layer of previously produced neurons is displaced toward the basal part of the procerebrum by the production of additional neurons. Our results suggest that the vast majority of the neurons (probably about 70-80%) of the snail procerebrum are produced during the first 1-2 months of posthatching development.
    Keywords: Life Sciences (General)
    Type: Journal of neurobiology (ISSN 0022-3034); 35; 3; 271-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...