ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: During the Hubble Space Telescope (HST) Second Servicing Mission (SM2), degradation of unsupported Teflon(R) FEP (fluorinated ethylene propylene), used as the outer layer of the multi-layer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer was retrieved during the mission and returned to Earth for ground testing and evaluation. The results of the Teflon(R) FEP sample evaluation and additional testing of pristine Teflon(R) FEP led the investigative team to theorize that the HST damage was caused by thermal cycling with deep-layer damage from electron and proton radiation which allowed the propagation of cracks along stress concentrations, and that the damage increased with the combined total dose of electrons, protons, UV and x-rays along with thermal cycling. This paper discusses the testing and evaluation of the Teflon(R) FEP.
    Keywords: Nonmetallic Materials
    Type: 20th Space Simulation Conference: The Changing Testing Paradigm; 173-186; NASA/CR-1998-208598-Preprint
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Maintaining contamination certification of multi-mission flight hardware is an innovative approach to controlling mission costs. Methods for assessing ground induced degradation between missions have been employed by the Hubble Space Telescope (HST) Project for the multi-mission (servicing) hardware. By maintaining the cleanliness of the hardware between missions, and by controlling the materials added to the hardware during modification and refurbishment both project funding for contamination recertification and schedule have been significantly reduced. These methods will be discussed and HST hardware data will be presented.
    Keywords: Quality Assurance and Reliability
    Type: 20th Space Simulation Conference: The Changing Testing Paradigm; 1-13; NASA/CR-1998-208598-Preprint
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The use of molecular adsorbers, in order to aid in the reduction of the spacecraft contamination levels, is discussed. Molecular adsorbers are characterized by an extremely large surface area, molecularly-porous substructure, and processing charged sites capable of retaining molecular contaminant species. Molecular adsorbers were applied on two Hubble Space Telescope servicing missions, as well as on the tropical rainfall measuring mission. The use of molecular adsorbers carries the potential for low cost, easy fabrication and integration of reliable means for reducing the contamination level around spacecraft.
    Keywords: Nonmetallic Materials
    Type: ; 435-443
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: The integrity and outgassing certification of reflown hardware, maintained between servicing missions while accommodating configuration changes to the hardware, are discussed. The Hubble Space Telescope requires a periodically servicing mission to maintain its scientific capabilities. Servicing carriers are reflown for each servicing mission. The mission contamination control program is unique as it must maintain the current operational capability of the telescope while allowing manned servicing.
    Keywords: Optics
    Type: ; 135-142
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: In-situ monitoring of the Wide-Field/Planetary Camera, a Hubble Space Telescope science instrument, was performed in a vacuum environment to better understand the formation of ice on cooled optical detectors. Several diagnostic instruments were mounted on an access plate to view the interior of the instrument housing and the graphite epoxy optical bench. The instrumentation chosen and the rationale for choosing the instrumentation are discussed. In addition, the performance of the instrumentation during monitoring operations is discussed.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA, Goddard Space Flight Center, 15th Space Simulation Conference: Support the Highway to Space Through Testing; p 12-25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-07
    Description: During the Hubble Space Telescope (HST) Second Servicing Mission (SM2), degradation of unsupported Teflon(trademark) FEP (fluorinated ethylene propylene), used as the outer layer of the multi-layer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer was retrieved during the mission and returned to Earth for ground testing and evaluation. The results of the Teflon(trademark) FEP sample evaluation and additional testing of pristine Teflon FEP led the investigative team to theorize that the HST damage was caused by thermal cycling with deep-layer damage from electron and proton radiation which allowed the propagation of cracks along stress concentrations, and that the damage increased with the combined total dose of electrons, protons, UV and x-rays along with thermal cycling. This paper discusses the testing and evaluation of the Teflon(trademark) FEP.
    Keywords: Nonmetallic Materials
    Type: 20th Space Simulation Conference: The Changing Testing Paradigm; 219-232; NASA/CP-1999-208598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-29
    Description: During the Hubble Space Telescope (HST) Second Servicing Mission (SM2), degradation of unsupported Teflon(Registered Trademark) FEP (fluorinated ethylene propylene), used as the outer layer of the multilayer insulation (MLI) blankets, was evident as large cracks on the telescope light shield. A sample of the degraded outer layer was retrieved during the mission and returned to Earth for ground testing and evaluation. The results of the Teflon(Registered Trademark) FEP sample evaluation and additional testing of pristine Teflon(Registered Trademark) FEP led the investigative team to theorize that the HST damage was caused by thermal cycling with deep-layer damage from electron and proton radiation which allowed the propagation of cracks along stress concentrations , and that the damage increased with the combined total dose of electrons, protons, UV and x-rays along with thermal cycling. This paper discusses the testing and evaluation of the retrieved Teflon(Registered Trademark) FEP.
    Keywords: Nonmetallic Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-29
    Description: The mechanical and optical properties of the metallized Teflon FEP thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Given the damage to the outer layer of the multi-layer insulation (MLI) that was apparent during the second servicing mission (SM2), the decision was made to replace the outer layer during subsequent servicing missions. A Failure Review Board was established to investigate the damage to the MLI and identify a replacement material. The replacement material had to meet the stringent thermal requirements of the spacecraft and maintain mechanical integrity for at least ten years. Ten candidate materials were selected and exposed to ten-year HST-equivalent doses of simulated orbital environments. Samples of the candidates were exposed sequentially to low and high energy electrons and protons, atomic oxygen, x-ray radiation, ultraviolet radiation and thermal cycling. Following the exposures, the mechanical integrity and optical properties of the candidates were investigated using Optical Microscopy, Scanning Electron Microscopy (SEM), a Laboratory Portable Spectroreflectometer (LPSR) and a Lambda 9 Spectroreflectometer. Based on the results of these simulations and analyses, the Failure Review Board selected a replacement material and two alternates that showed the highest likelihood of providing the requisite thermal properties and surviving for ten years in orbit.
    Keywords: Composite Materials
    Type: High Performance Polymers Journal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: A Get Away Special (GAS) experiment payload to investigate microgravity effects on solidification phenomena of selected experimental samples has been designed for flight. It is intended that the first flight of the assembly will (1) study the p-n junction characteristics for advancing semiconductor device applications, (2) study the effects of gravity-driven convection on the growth of HgCd crystals, (3) compare the textures of the sample which crystallizes in microgravity with those found in chondrite meteorites, and (4) modify glass optical characteristics through divalent oxygen exchange. The space flight experiment consists of many small furnaces. While the experiment payload is in the low gravity environment of orbital flight, the payload controller will sequentially activate the furnaces to heat samples to their melt state and then allow cooling to resolidification in a controlled fashion. The materials processed in the microgravity environment of space will be compared to the same materials processed on earth in a one-gravity environment. This paper discusses the design of all subassemblies (furnance, electronics, and power systems) in the experiment. A complete description of the experimental materials is also presented.
    Keywords: MATERIALS PROCESSING
    Type: NASA. Goddard Space Flight Center, The 1992 Shuttle Small Payloads Symposium; p 95-101
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: The Scientific Instrument Protective Enclosures were designed for the Hubble Space Telescope Servicing Missions to provide a beginning environment to a Scientific Instrument during ground and on orbit activities. The Scientific Instruments required very stringent surface cleanliness and molecular outgassing levels to maintain ultraviolet performance. Data from the First Servicing Mission verified that both the Scientific Instruments and Scientific Instrument Protective Enclosures met surface cleanliness level requirements during ground and on-orbit activities.
    Keywords: OPTICS
    Type: Eighteenth Space Simulation Conference: Space Mission Success Through Testing; p 75-85
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...