ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: The use of molecular adsorbers, in order to aid in the reduction of the spacecraft contamination levels, is discussed. Molecular adsorbers are characterized by an extremely large surface area, molecularly-porous substructure, and processing charged sites capable of retaining molecular contaminant species. Molecular adsorbers were applied on two Hubble Space Telescope servicing missions, as well as on the tropical rainfall measuring mission. The use of molecular adsorbers carries the potential for low cost, easy fabrication and integration of reliable means for reducing the contamination level around spacecraft.
    Keywords: Nonmetallic Materials
    Type: ; 435-443
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: The Hubble Space Telescope (HST) was launched into low Earth orbit on April 24,1990. During the first servicing mission in December 1993 (3.6 years after launch), multilayer insulation (MLI) blankets were retrieved from the two magnetic sensing systems located on the light shield. Retrieval of one of the solar arrays during this mission also provided MLI blanket material from the solar array drive arm. These MLI materials were analyzed in ground-based facilities, and results indicate that the space-facing outer layer of the MLI, aluminized Teflon FEP (DuPont; fluorinated ethylene propylene), was beginning to degrade. Close inspection of the FEP revealed through-the-thickness cracks in areas with the highest solar exposure and stress concentration. During the second servicing mission in February 1997 (6.8 years after launch), astronauts observed and documented severe cracking in the outer layer of the MLI blankets on both the solar-facing and anti-solar-facing surfaces. During this second mission, some material from the outer layer of the light shield MLI was retrieved and subsequently analyzed in ground-based facilities. After the second servicing mission, a Failure Review Board was convened by NASA Goddard Space Flight Center to address the MLI degradation problem on HST. Members of the Electro-Physics Branch of the NASA Glenn Research Center at Lewis Field participated on this board. To determine possible degradation mechanisms, board researchers needed to consider all environmental constituents to which the FEP MLI surfaces were exposed. On the basis of measurements, models, and predictions, environmental exposure conditions for FEP surfaces on HST were estimated for various time periods from launch in 1990 through 2010, the planned end-of-life for HST. The table summarizes these data including the number and temperature ranges of thermal cycles; equivalent Sun hours; fluence and absorbed radiation dose from solar event x rays; fluence and absorbed dose from solar wind protons and electrons trapped in Earth s magnetic field; fluence of plasma electrons and protons; and atomic oxygen fluence.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Molecular and particulate contaminants generated from the operations of a propulsion system may impinge on spacecraft critical surfaces. Plume depositions or clouds may hinder the spacecraft and instruments from performing normal operations. Firing thrusters will generate both molecular and particulate contaminants. How to minimize the contamination impact from the plume becomes very critical for a successful mission. The resulting effect from either molecular or particulate contamination of the thruster firing is very distinct. This paper will discuss the interconnection between the functions of spacecraft contamination modeling and propulsion system implementation. The paper will address an innovative contamination engineering approach implemented from the spacecraft concept design, manufacturing, integration and test (I&T), launch, to on- orbit operations. This paper will also summarize the implementation on several successful missions. Despite other contamination sources, only molecular contamination will be considered here.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2000-0461 , 38th Aerospace Sciences Meeting; Jan 10, 2000 - Jan 13, 2000; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: The James Webb Space Telescope (JWST), set to launch in early 2019, is currently undergoing a series of system-level environmental tests to verify its workmanship and end-to-end functionality. As part of this series, the Optical Telescope Element and Integrated Science Instrument Module (OTIS) Cryo-Vacuum (CV) test, the most complex cryogenic test executed to date by NASA, has recently been completed at the Johnson Space Centers Chamber A facility. The OTIS CV test was intended as a comprehensive test of the integrated instrument and telescope systems to fully understand its optical, structural, and thermal performance within its intended flight environment. Due to its complexity, extensive pre-test planning was required to ensure payload safety and compliance with all limits and constraints. A system-level pre-test thermal model was constructed which fully captured the behavior of the payload, ground support equipment, and surrounding test chamber. This thermal model simulated both the transient cooldown to and warmup from a 20K flight-like environment, as well as predicted the payload performance at cryo-stable conditions. The current work is a preliminary assessment of thermal model performance against actual payload response during the OTIS CV test. Overall, the thermal model performed exceedingly well at predicting schedule and payload response. Looking in depth, this work examines both the benefits and shortcomings of assumptions made pre-test to simplify model execution when compared against test data. It explores in detail the role of temperature-dependent emissivities during transition to cryogenic temperatures, as well as the impact that model geometry simplifications have on tracking of critical hardware limits and constraints. This work concludes with a list of recommendations to improve the accuracy of thermal modeling for future large cryogenic tests. It is hoped that the insight gained from the OTIS CV test thermal modeling will benefit planning and execution for upcoming cryogenic missions.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN48316 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The James Webb Space Telescope (JWST), set to launch in early 2019, is currently undergoing a series of system-level environmental tests to verify its workmanship and end-to-end functionality. As part of this series, the Optical Telescope Element and Integrated Science Instrument Module (OTIS) Cryo-Vacuum (CV) test, the most complex cryogenic test executed to date by NASA, has recently been completed at the Johnson Space Center's Chamber A facility. The OTIS CV test was intended as a comprehensive test of the integrated instrument and telescope systems to fully understand its optical, structural, and thermal performance within its intended flight environment. Due to its complexity, extensive pre-test planning was required to ensure payload safety and compliance with all limits and constraints. A system-level pre-test thermal model was constructed which fully captured the behavior of the payload, ground support equipment, and surrounding test chamber. This thermal model simulated both the transient cooldown to and warmup from a 20K flight-like environment, as well as predicted the payload performance at cryo-stable conditions. The current work is a preliminary assessment of thermal model performance against actual payload response during the OTIS CV test. It examines both the benefits and shortcomings of assumptions made pre-test to simplify model execution when compared against test data. It explores in detail the role of temperature-dependent emissivities during transition to cryogenic temperatures, as well as the impact that model geometry simplifications have on tracking of critical hardware limits and constraints. This work concludes with a list of recommendations to improve the accuracy of thermal modeling for future large cryogenic tests. It is hoped that the insight gained from the OTIS CV test thermal modeling will benefit planning and execution for upcoming cryogenic missions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN58424 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The James Webb Space Telescope (JWST), set to launch in mid-2020, is currently undergoing a series of system-level environmental tests to verify its workmanship and end-to-end functionality. As part of this series, the Optical Telescope Element and Integrated Science Instrument Module (OTIS) Cryo-Vacuum (CV) test, the most complex cryogenic test executed to date by NASA, has recently been completed at the Johnson Space Center's Chamber A facility. The OTIS CV test was intended as a comprehensive test of the integrated instrument and telescope systems to fully understand its optical, structural, and thermal performance within its intended flight environment. Due to its complexity, extensive pre-test planning was required to ensure payload safety and compliance with all limits and constraints. A system-level pre-test thermal model was constructed which fully captured the behavior of the payload, ground support equipment, and surrounding test chamber. This thermal model simulated both the transient cooldown to and warmup from a 20 K flight-like environment, as well as predicted the payload performance at cryo-stable conditions. The current work is an assessment of thermal model pre-test prediction performance against actual payload response during the OTIS CV test. Overall, the thermal model performed exceedingly well at predicting schedule and payload response. Looking in depth, this work examines both the benefits and shortcomings of assumptions made pre-test to simplify model execution when compared against test data. It explores in detail the role of temperature-dependent emissivities during transition to cryogenic temperatures, as well as the impact that model geometry simplifications have on tracking of critical hardware limits and constraints. This work concludes with a list of recommendations to improve the accuracy of thermal modeling for future large cryogenic tests. The insight gained from the OTIS CV test thermal modeling will benefit planning and execution for upcoming cryogenic missions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN58381 , International Conference on Environmental Systems; Jul 08, 2018 - Jul 12, 2018; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Theoretical consideration and supporting data are presented regarding the nature of the transport mechanisms which cause the adsorption of gases on spacecraft surfaces. Particular attention is given to the concept of a sticking coefficient which is the ratio of the thermally accommodated mass to the total incident mass. Existing molecular accommodation data are examined in terms of spacecraft applications and recent contamination-control data are introduced. Two distinct yet linked concepts emerge which are the accommodation and sticking coefficients, and surface roughness contributes significantly to both coefficients. A general equation regarding the coefficients is developed, and the data are found to fit the equation basically. It is concluded that a more precise characterization of the coefficients can be obtained through experimentation under simulated spacecraft conditions.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Optical System Contamination: Effects, Measurement, Control II; Jul 10, 1990 - Jul 12, 1990; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.
    Keywords: Astrophysics; Aeronautics (General)
    Type: GSFC-E-DAA-TN36041 , Space Simulation Conference; Nov 14, 2016 - Nov 17, 2016; Annapolis, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and scheduled for launch in 2018. The JWST OTE, including the primary mirrors, secondary mirror, and the Aft Optics Subsystems (AOS) are designed to be passively cooled and operate at near 45 degrees Kelvin. Due to the size of its large sunshield in relation to existing test facilities, JWST cannot be optically or thermally tested as a complete observatory-level system at flight temperatures. As a result, the telescope portion along with its instrument complement will be tested as a single unit very late in the program, and on the program schedule critical path. To mitigate schedule risks, a set of 'pathfinder' cryogenic tests will be performed to reduce program risks by demonstrating the optical testing capabilities of the facility, characterizing telescope thermal performance, and allowing project personnel to learn valuable testing lessons off-line. This paper describes the 'pathfinder' cryogenic test program, focusing on the recently completed second test in the series called the Optical Ground Support Equipment 2 (OGSE2) test. The JWST OGSE2 was successfully completed within the allocated project schedule while faced with numerous conflicting thermal requirements during cool-down to the final cryogenic operational temperatures, and during warm-up after the cryo-stable optical tests. The challenges include developing a pre-test cool-down and warm-up profiles without a reliable method to predict the thermal behaviors in a rarified helium environment, and managing the test article hardware safety driven by the project Limits and Constraints (L&C's). Furthermore, OGSE2 test included the time critical Aft Optics Subsystem (AOS), a part of the flight Optical Telescope Element that would need to be placed back in the overall telescope assembly integrations. The OGSE2 test requirements included the strict adherence of the project contamination controls due to the presence of the contamination sensitive flight optical elements. The test operations required close coordination of numerous personnel while they being exposed and trained for the 'final' combined OTE and instrument cryo-test in 2017. This paper will also encompass the OGSE2 thermal data look-back review.
    Keywords: Astronomy
    Type: ICES-2016-330 , GSFC-E-DAA-TN32058 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...