ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  [Invited talk] In: IMS-IAS 33. International Meeting of Sedimentology, 10.-12.10.2017, Toulouse, France .
    Publication Date: 2018-05-09
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Understanding micro-seismicity is a critical question for earthquake hazard assessment. Since the devastating earthquakes of Izmit and Duzce in 1999, the seismicity along the submerged section of North Anatolian Fault within the Sea of Marmara (comprising the “Istanbul seismic gap”) has been extensively studied in order to infer its mechanical behaviour (creeping vs locked). So far, the seismicity has been interpreted only in terms of being tectonic-driven, although the Main Marmara Fault (MMF) is known to strike across multiple hydrocarbon gas sources. Here, we show that a large number of the aftershocks that followed the M 5.1 earthquake of July, 25th 2011 in the western Sea of Marmara, occurred within a zone of gas overpressuring in the 1.5–5 km depth range, from where pressurized gas is expected to migrate along the MMF, up to the surface sediment layers. Hence, gas-related processes should also be considered for a complete interpretation of the micro-seismicity (~M 〈 3) within the Istanbul offshore domain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-27
    Description: Highlights • We examine interplay between historical seismicity, mass failures and turbidites during sapropel S1 deposition; • We reconstruct chronology of earthquake triggered turbidites in the Ionian Sea during sapropel depostion; • We reconstruct the age of sapropel S1 in our core (6.0-10.2 kyr cal. BP) through Oxcal age modeling; • Turbidite emplacement time was deduced through age modeling. • We compiled a catalogue of mass flow events during several earthquake cycles. Abstract The recurrence of mass-flow units within sapropel S1, an organic carbon-rich lower Holocene marker bed in the Eastern Mediterranean Sea, was used to study the interplay between earthquakes and sedimentation along the seismically active Calabrian Arc (Ionian Sea). Nine turbidite beds interrupt anoxic conditions during the deposition of sapropel S1. Each of these turbidites is associated with sharp grain size and geochemical elemental anomalies (high Al and Si, low Ca and coarse-grained basal part marked by Zr peaks), and with displaced foraminiferal species from different bathymetric ranges. We used these proxies to identify turbidite beds also above and below the sapropel, where turbidite signature is less clear due to the absence of major color changes. Turbidite structure and composition, as well as comparison with historical seismoturbidites, suggest a seismic triggering for such mass flow events. The peculiar color, well-known composition, geochemistry and age of sapropel S1, make this unit a key bed within which turbidites may be considered a sort of sedimentary “bar code” recording high-energy events within the background pelagic sedimentation; deciphering this code will reconstruct paleo-seismicity in this well-defined stratigraphic interval. The pelagic units bracketing turbidite beds were radiometrically dated, and the age of the sapropel S1, deduced through age modeling, is between 6.0 and 10.2 kyr cal BP. The emplacement age of each turbidite was estimated considering the average time-interval between successive turbidite beds (from pelagic sediment thickness and sedimentation rate). Subsequently these ages were further refined through age modeling. In this way, we compiled a catalogue of mass flow events during sapropel S1 deposition, a time span long enough to include several earthquake cycles and allow reliable seismic and tsunami hazard assessment in this area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: Mantle-derived serpentinites have been detected at magma-poor rifted margins and above subduction zones, where they are usually produced by fluids released from the slab to the mantle wedge. Here we show evidence of a new class of serpentinite diapirs within the external subduction system of the Calabrian Arc, derived directly from the lower plate. Mantle serpentinites rise through lithospheric faults caused by incipient rifting and the collapse of the accretionary wedge. Mantle-derived diapirism is not linked directly to subduction processes. The serpentinites, formed probably during Mesozoic Tethyan rifting, were carried below the subduction system by plate convergence; lithospheric faults driving margin segmentation act as windows through which inherited serpentinites rise to the sub-seafloor. The discovery of deep-seated seismogenic features coupled with inherited lower plate serpentinite diapirs, provides constraints on mechanisms exposing altered products of mantle peridotite at the seafloor long time after their formation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-01
    Description: Highlights • Plate boundary re-organization in the central Mediterranean Sea • Segmentation of the subduction complex along lithospheric transverse faults • STEP faults in the Ionian Sea • Pleistocene active faulting and Mt. Etna formation Abstract The Calabrian Arc is a narrow subduction-rollback system resulting from Africa/Eurasia plate convergence. While crustal shortening is taken up in the accretionary wedge, transtensive deformation accounts for margin segmentation along transverse lithospheric faults. One of these structures is the NNW-SSE transtensive fault system connecting the Alfeo seamount and the Etna volcano (Alfeo-Etna Fault, AEF). A second, NW-SE crustal discontinuity, the Ionian Fault (IF), separates two lobes of the CA subduction complex (Western and Eastern Lobes) and impinges on the Sicilian coasts south of the Messina Straits. Analysis of multichannel seismic reflection profiles shows that: 1) the IF and the AEF are transfer crustal tectonic features bounding a complex deformation zone, which produces the downthrown of the Western lobe along a set of transtensive fault strands; 2) during Pleistocene times, transtensive faulting reactivated structural boundaries inherited from the Mesozoic Tethyan domain which acted as thrust faults during the Messinian and Pliocene; 3) the IF and the AEF, and locally the Malta escarpment, accommodate a recent tectonic event coeval and possibly linked to the Mt. Etna formation. Regional geodynamic models show that, whereas AEF and IF are neighboring fault systems, their individual roles are different. Faulting primarily resulting from the ESE retreat of the Ionian slab is expressed in the northwestern part of the IF. The AEF, on the other hand, is part of the overall dextral shear deformation, resulting from differences in Africa-Eurasia motion between the western and eastern sectors of the Tyrrhenian margin of northern Sicily, and accommodating diverging motions in the adjacent compartments, which results in rifting processes within the Western Lobe of the Calabrian Arc accretionary wedge. As such, it is primarily associated with Africa-Eurasia relative motion.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: The submerged section of the North Anatolian fault within the Marmara Sea was investigated using acoustic techniques and submersible dives. Most gas emissions in the water column were found near the surface expression of known active faults. Gas emissions are unevenly distributed. The linear fault segment crossing the Central High and forming a seismic gap – as it has not ruptured since 1766, based on historical seismicity, exhibits relatively less gas emissions than the adjacent segments. In the eastern Sea of Marmara, active gas emissions are also found above a buried transtensional fault zone, which displayed micro-seismic activity after the 1999 events. Remarkably, this zone of gas emission extends westward all along the southern edge of Cinarcik basin, well beyond the zone where 1999 aftershocks were observed. The long term monitoring of gas seeps could hence be highly valuable for the understanding of the evolution of the fluid-fault coupling processes during the earthquake cycle within the Marmara Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-05-12
    Description: We analyzed the structure and evolution of the external Calabrian Arc (CA) subduction complex through an integrated geophysical approach involving multichannel and single‐channel seismic data at different scales. Pre‐stack depth migrated crustal‐scale seismic profiles have been used to reconstruct the overall geometry of the subduction complex, i.e., depth of the basal detachment, geometry and structural style of different tectonic domains, and location and geometry of major faults. High‐resolution multichannel seismic (MCS) and sub‐bottom CHIRP profiles acquired in key areas during a recent cruise, as well as multibeam data, integrate deep data and constrain the fine structure of the accretionary wedge as well as the activity of individual fault strands. We identified four main morpho‐structural domains in the subduction complex: 1) the post‐Messinian accretionary wedge; 2) a slope terrace; 3) the pre‐Messinian accretionary wedge and 4) the inner plateau. Variation of structural style and seafloor morphology in these domains are related to different tectonic processes, such as frontal accretion, out‐of-sequence thrusting, underplating and complex faulting. The CA subduction complex is segmented longitudinally into two different lobes characterized by different structural style, deformation rates and basal detachment depths. They are delimited by a NW/SE deformation zone that accommodates differential movements of the Calabrian and the Peloritan portions of CA and represent a recent phase of plate re‐organization in the central Mediterranean. Although shallow thrust‐type seismicity along the CA is lacking, we identified active deformation of the shallowest sedimentary units at the wedge front and in the inner portions of the subduction complex. This implies that subduction could be active but aseismic or with a locked fault plane. On the other hand, if underthrusting of the African plate has stopped recently, active shortening may be accommodated through more distributed deformation. Our findings have consequences on seismic hazard, since we identified tectonic structures likely to have caused large earthquakes in the past and to be the source regions for future events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-05-31
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-03-11
    Description: We carried out a combined geophysical and gas-geochemical survey on an active fault strand along the North Anatolian Fault (NAF) system in the Gulf of İzmit (eastern Sea of Marmara), providing for the first time in this area data on the distribution of methane (CH4) and other gases dissolved in the bottom seawater, as well as the CH4isotopic composition. Based on high-resolution morphobathymetric data and chirp-sonar seismic reflection profiles we selected three areas with different tectonic features associated to the NAF system, where we performed visual and instrumental seafloor inspections, including in situ measurements of dissolved CH4, and sampling of the bottom water. Starting from background values of 2–10 nM, methane concentration in the bottom seawater increases abruptly up to 20 nM over the main NAF trace. CH4 concentration peaks up to ∼120 nM were detected above mounds related probably to gas and fluids expulsion. Methane is microbial (δ13CCH4: −67.3 and −76‰ versus VPDB), and was found mainly associated with pre-Holocene deposits topped by a 10–20 m thick draping of marine mud. The correlation between tectonic structures and gas-seepages at the seafloor suggests that the NAF in the Gulf of İzmit could represent a key site for long-term combined monitoring of fluid exhalations and seismicity to assess their potential as earthquake precursors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS
    In:  Bolletino di Geofisica Teorica ed Applicata, 53 (4). pp. 371-384.
    Publication Date: 2014-03-11
    Description: After the 1999 I . zmit earthquake (Mw7.4), along the North-Anatolian Fault (NAF), an increase in gas emissions from the seafloor of the Sea of Marmara was observed. Using a multidisciplinary approach, that includes a combined analysis of high-resolution marine geophysical and gas-geochemical data, we determined the character of gas/fluid emissions and their spatial relationship with tectonic structures in the Darıca Basin (Gulf of Izmit), close to the western termination of the 1999 earthquake surface rupture. Data collected during several oceanographic expeditions allowed us to investigate the fine structure of active fault branches, as well as the geochemical signature of the cold seeps. We observed that gas emissions at the seafloor of the Darıca Basin are mostly constituted by biogenic CH4, and are aligned along strike-slip and transtensional fault segments. Although maximum CH4 concentrations were measured in correspondence of transtensional strands, we suggest that the biogenic CH4 emissions found along strike-slip segments, showing a relatively low gas background noise and a potential to increase during seismic events, are more suitable to study relationships between gas expulsion and the earthquake cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...