ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
Collection
Years
  • 1
    facet.materialart.
    Unknown
    Oceanography Society
    In:  Oceanography, 8 (3). pp. 87-91.
    Publication Date: 2018-08-15
    Description: First Paragraph: From its littoral margin to the open ocean, the western South Atlantic (Fig. 1) is marked at all depths by circulation patterns and exchange processes that are centrally important to the regional marine resources and local economies, and to the global flux of heat and dissolved substances. Among other important characteristics, the Southwest Atlantic (SWA) is characterized by the presence of the Brazil Current (BC), a warm western boundary current that, while weaker than the Gulf Stream in terms of mass transport, is energetically comparable to its North Atlantic counterpart, particularly in the region of confluence with the northward-flowing Malvinas Current (MC) at approximately 38°S. Because of the wide range of issues needed to be understood in terms of the physical oceanography, this oceanic region has been addressed by several important scientific programs, a few of which are listed in Table 1 and indicated on Fig. 2. Results from these and other programs are summarized here and recommendations for future efforts are offered.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) is a multinational program initiated in 1997 in the tropical Atlantic to improve our understanding and ability to predict ocean-atmosphere variability. PIRATA consists of a network of moored buoys providing meteorological and oceanographic data transmitted in real time to address fundamental scientific questions as well as societal needs. The network is maintained through dedicated yearly cruises, which allow for extensive complementary shipboard measurements and provide platforms for deployment of other components of the Tropical Atlantic Observing System. This paper describes network enhancements, scientific accomplishments and successes obtained from the last 10 years of observations, and additional results enabled by cooperation with other national and international programs. Capacity building activities and the role of PIRATA in a future Tropical Atlantic Observing System that is presently being optimized are also described.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP) provides a globally coordinated network and oversight of 55 sustained decadal repeat hydrographic reference lines. GO-SHIP is part of the global ocean/climate observing systems (GOOS/GCOS) for study of physical oceanography, the ocean carbon, oxygen and nutrient cycles, and marine biogeochemistry. GO-SHIP enables assessment of the ocean sequestration of heat and carbon, changing ocean circulation and ventilation patterns, and their effects on ocean health and Earth's climate. Rapid quality control and open data release along with incorporation of the GO-SHIP effort in the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) in situ Observing Programs Support Center (JCOMMOPS) have increased the profile of, and participation in, the program and led to increased data use for a range of efforts. In addition to scientific discovery, GO-SHIP provides climate quality observations for ongoing calibration of measurements from existing and new autonomous platforms. This includes biogeochemical observations for the nascent array of biogeochemical (BGC)-Argo floats; temperature and salinity for Deep Argo; and salinity for the core Argo array. GO-SHIP provides the relevant suite of global, full depth, high quality observations and co-located deployment opportunities that, for the foreseeable future, remain crucial to maintenance and evolution of Argo's unique contribution to climate science. The evolution of GO-SHIP from a program primarily focused on physical climate to increased emphasis on ocean health and sustainability has put an emphasis on the addition of essential ocean variables for biology and ecosystems in the program measurement suite. In conjunction with novel automated measurement systems, ocean color, particulate matter, and phytoplankton enumeration are being explored as GO-SHIP variables. The addition of biological and ecosystem measurements will enable GO-SHIP to determine trends and variability in these key indicators of ocean health. The active and adaptive community has sustained the network, quality and relevance of the global repeat hydrography effort through societally important scientific results, increased exposure, and interoperability with new efforts and opportunities within the community. Here we provide key recommendations for the continuation and growth of GO-SHIP in the next decade.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The excess heat absorbed from the atmosphere has increased the temperature in the upper layers of the ocean (〈2,000 m). In the abyss, infrequently repeated ship sections, deep Argo float measurements, and sparse moored observations have found signs of warming in the Southwest Atlantic, possibly linked to changes in the Weddell Sea. We present a new moored temperature time series sampled near the bottom in the Vema Channel, from February 2019 to August 2020. Together with historical data, the combined record confirms the warming of the abyssal waters, with an increase of 0.059°C in potential temperature between January 1991 and August 2020, embedded within intense high-frequency variability. Moreover, the data suggest the possibility of an accelerated warming, with a change in the temperature trend from 0.0016°C yr−1, between the early 1990s and 2005, to 0.0026°C yr−1 afterwards.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...