ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: The ENTICE experiment is one of two instruments that make up the HNX mission. The experimental goal of ENTICE is to measure with high precision the elemental abundances of all nuclei with Z between 10 and 82. This will enable us to determine if the injection mechanism for the cosmic ray accelerator is controlled by FIP or Volatility and to study the mix of nucleosynthetic processes that contribute to the galactic cosmic ray source. The ENTICE experiment utilizes the dE/dx-C method of charge determination and consists of silicon dE/dx detectors, Cherenkov detectors with two different refractive indices, and a fiber hodoscope. We will describe the instrument and its performance based on beam tests of a prototype instrument.
    Keywords: Space Radiation
    Type: ICRC 2001 Conference; Aug 07, 2001 - Aug 15, 2001; Hamburg; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: The ECCO (Extremely-heavy Cosmic-ray Composition Observer) instrument is one of two instruments which comprise the HNX (Heavy Nuclei Explorer) mission. The principal goal of ECCO is to measure the age of galactic cosmic ray nuclei using the actinides (Th, U, Pu, Cm) as clocks. As a bonus, ECCO will search with unprecedented sensitivity for long-lived elements in the superheavy island of stability. ECCO is an enormous array (23 sq. m) of BP-1 glass track-etch detectors, and is based on the successful flight heritage of the Trek detector which was deployed externally on Mir. We present a description of the instrument, estimates of expected performance, and recent calibrations which demonstrate that the actinides can be resolved from each other with good charge resolution.
    Keywords: Space Radiation
    Type: ICRC 2001 Conference; Aug 07, 2001 - Aug 15, 2001; Hamburg; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: The primary scientific objectives of HNX, which was recently selected by NASA for a Small Explorer (SMEX) Mission Concept Study, are to measure the age of the galactic cosmic rays (GCR) since nucleosynthesis, determine the injection mechanism for the GCR accelerator (Volatility or FIP), and study the mix of nucleosynthetic processes that contribute to the source of GCRs. The experimental goal of HNX is to measure the elemental abundances of all individual stable nuclei from neon through the actinides and possibly beyond. HNX is composed of two instruments: ECCO, which measures elemental abundances of nuclei with Z greater than or equal to 72, and ENTICE. which measures elemental abundances of nuclei with Z between 10 and 82. We describe the mission and the science that can be addressed by HNX.
    Keywords: Space Radiation
    Type: 27th ICRC 2001 Conference; Aug 07, 2001 - Aug 15, 2001; Hamburg; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: The ENTICE experiment is one of two instruments which make up the HNX mission. The experimental goal of ENTICE is to measure with high precision the elemental abundances of all nuclei with 10〈=Z〈=82. This will enable us to distinguish between possible injection mechanisms for the galactic cosmic ray accelerator such-as those dependent upon volatility or first ionization potential, and to study the mix of nucleosynthetic processes that contribute to the galactic cosmic ray source. The ENTICE experiment utilizes the dE/dx-C method of charge determination and consists of silicon dE/dx detectors, Cherenkov detectors with two different refractive indices, and a scintillating fiber hodoscope. The geometrical factor of the instrument is 8m2.sr. We will present a description of the instrument and its expected performance based on beam tests and a balloon flight of a prototype instrument.
    Keywords: Space Radiation
    Type: International Cosmic Ray Conference; Aug 07, 2001 - Aug 15, 2001; Hamburg; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: The Isotope Magnet Experiment (ISOMAX), a balloon-borne superconducting magnet spectrometer, was designed to measure the isotopic composition of the light isotopes (3 les than or = Z less than or = 8) of cosmic radiation up to 4 GeV/nucleon with a mass resolution of better than 0.25 amu by using the velocity versus rigidity technique. To achieve this stringent mass resolution, ISOMAX was composed of three major detector systems: a magnetic rigidity spectrometer with a precision drift chamber tracker in conjunction with a three-layer time-of-flight system, and two silica-aerogel Cerenkov counters for velocity determination. A special emphasis of the ISOMAX program was the accurate measurement of radioactive Be-10 with respect to its stable neighbor isotope Be-9, which provides important constraints on the age of cosmic rays in the Galaxy. ISOMAX had its first balloon flight on 1998 August 4-5 from Lynn Lake, Manitoba, Canada. Thirteen hours of data were recorded during this flight at a residual atmosphere of less than 5 g/sq cm. The isotopic ratio at the top of the atmosphere for Be-10/Be-9 was measured to be 0.195 +/- 0.036 (statistical) +/- 0.039 (systematic) between 0.26 and 1.03 GeV/nucleon and 0.317 +/- 0.109(statistical) +/- 0.042(systematic) between 1.13 and 2.03 GeV/nucleon. This is the first measurement of its kind above l GeV/nucleon. ISOMAX results tend to be higher than predictions from current propagation models. In addition to the beryllium results, we report the isotopic ratios of neighboring lithium and boron in the energy range of the time-of-flight system (up to approx. 1 GeV/nucleon). The lithium and boron ratios agree well with existing data and model predictions at similar energies.
    Keywords: Space Radiation
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: The Isotope Magnet Experiment (ISOMAX) a balloon-borne superconducting magnet spectrometer was designed to measure the isotopic composition of the light isotopes (3 less than or equal to Z less than or equal to 8) of the cosmic radiation up to 4 GeV nucleon (exp -1) with a mass resolution of better than 0.25 amu by using the velocity vs. rigidity technique. To achieve this stringent mass resolution ISOMAX was comprised of three major detector systems, a magnetic rigidity spectrometer with a precision drift chamber tracker in conjunction with a three-layer time-of-flight system and two silica-aerogel Cherenkov counters for the velocity determination. A special emphasis of the ISOMAX program was the accurate measurement of radioactive Be-10 with respect to its stable neighbor isotope Be-9, which provides important constraints on the age of cosmic rays in the Galaxy. ISOMAX had its first balloon flight on August 4-5, 1998, from Lynn Lake, Manitoba, Canada. Thirteen hours of data were recorded during this flight at a residual atmosphere of less than 5 g per square centimeter. The isotopic ratio at the top of the atmosphere for Be-10/Be-9 was measured to be 0.195 plus or minus 0.036 (statistical) plus or minus 0.039 (systematic) between 0.26 - 1.03GeV nucleon (exp -1) and 0.317 plus or minus 0.109 (statistical) plus or minus 0.042 (systematic) between 1.13 - 2.03GeV nucleon(exp -1). This is the first measurement of its kind above 1 GeV nucleon (exp -1). ISOMAX results tend to be higher than predictions from current propagation models.
    Keywords: Space Radiation
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...