ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-04-23
    Description: Stable isotope compositions can potentially be used to trace atmospheric Cd inputs to the surface ocean and anthropogenic Cd emissions to the atmosphere. Both of these applications may provide valuable insights into the effects of anthropogenic activities on the cycling of Cd in the environment. However, a lack of constraints for the Cd isotope compositions of atmospheric aerosols is currently hindering such studies. Here, we present stable Cd isotope data for aerosols collected over the Tropical Atlantic Ocean. The samples feature variable proportions of mineral dust-derived and anthropogenic Cd, yet exhibit similar isotope compositions, thus negating the distinction of these Cd sources using isotopic signatures in this region. Isotopic variability between these two atmospheric Cd sources may be identified in other areas, and thus warrants further investigation. Regardless, these data provide important initial constraints on the isotope composition of atmospheric Cd inputs to the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-17
    Description: Current climate models disagree on how much carbon dioxide land ecosystems take up for photosynthesis. Tracking the stronger carbonyl sulfide signal could help.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Deep-sea ecosystems, limited by their inability to use primary production as a source of carbon, rely on other sources to maintain life. Sedimentation of organic carbon into the deep sea has been previously studied, however, the high biomass of sedimented Sargassum algae discovered during the VEMA Transit expedition in 2014/2015 to the southern North Atlantic, and its potential as a regular carbon input, has been an underestimated phenomenon. To determine the potential for this carbon flux, a literature survey of previous studies that estimated the abundance of surface water Sargassum was conducted. We compared these estimates with quantitative analyses of sedimented Sargassum appearing on photos taken with an autonomous underwater vehicle (AUV) directly above the abyssal sediment during the expedition. Organismal communities associated to Sargassum fluitans from surface waters were investigated and Sargassum samples collected from surface waters and the deep sea were biochemically analyzed (fatty acids, stable isotopes, C:N ratios) to determine degradation potential and the trophic significance within deep-sea communities. The estimated Sargassum biomass (fresh weight) in the deep sea (0.07 − 3.75 g/m2) was several times higher than that estimated from surface waters in the North Atlantic (0.024 – 0.84 g/m2). Biochemical analysis showed degradation of Sargassum occurring during sedimentation or in the deep sea, however, fatty acid and stable isotope analysis did not indicate direct trophic interactions between the algae and benthic organisms. Thus, it is assumed that components of the deep-sea microbial food web form an important link between the macroalgae and larger benthic organisms. Evaluation of the epifauna showed a diverse nano- micro-, meio, and macrofauna on surface Sargassum and maybe transported across the Atlantic, but we had no evidence for a vertical exchange of fauna components. The large-scale sedimentation of Sargassum forms an important trophic link between surface and benthic production and has to be further considered in the future as a regular carbon input to the deep-sea floor in the North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: Back-arc spreading centers (BASCs) form a distinct class of ocean spreading ridges distinguished by steep along-axis gradients in spreading rate and by additional magma supplied through subduction. These characteristics can affect the population and distribution of hydrothermal activity on BASCs compared to mid-ocean ridges (MORs). To investigate this hypothesis, we comprehensively explored 600 km of the southern half of the Mariana BASC. We used water column mapping and seafloor imaging to identify 19 active vent sites, an increase of 13 over the current listing in the InterRidge Database (IRDB), on the bathymetric highs of 7 of the 11 segments. We identified both high and low (i.e., characterized by a weak or negligible particle plume) temperature discharge occurring on segment types spanning dominantly magmatic to dominantly tectonic. Active sites are concentrated on the two southernmost segments, where distance to the adjacent arc is shortest (〈40 km), spreading rate is highest (〉48 mm/yr), and tectonic extension is pervasive. Re-examination of hydrothermal data from other BASCs supports the generalization that hydrothermal site density increases on segments 〈90 km from an adjacent arc. Although exploration quality varies greatly among BASCs, present data suggest that, for a given spreading rate, the mean spatial density of hydrothermal activity varies little between MORs and BASCs. The present global database, however, may be misleading. On both BASCs and MORs, the spatial density of hydrothermal sites mapped by high-quality water-column surveys is 2–7 times greater than predicted by the existing IRDB trend of site density versus spreading rate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-23
    Description: The supply and bioavailability of iron (Fe) controls primary productivity and N2-fixation in large parts of the global ocean. An important, yet poorly quantified, source to the ocean is particulate Fe (pFe). Here we present the first combined dataset of particulate, labile-particulate (L-pFe) and dissolved Fe (dFe) from the (sub)-tropical North Atlantic. We show a strong relationship between L-pFe and dFe, indicating a dynamic equilibrium between these two phases whereby particles ‘buffer’ dFe and maintain the elevated concentrations observed. Moreover, L-pFe can increase the overall ‘available’ (L-pFe + dFe) Fe pool by up to 55%. The lateral shelf flux of this available Fe was similar in magnitude to observed soluble aerosol-Fe deposition, a comparison that has not been previously considered. These findings demonstrate that L-pFe is integral to Fe cycling and hence plays a role in regulating carbon cycling, warranting its’ inclusion in Fe budgets and biogeochemical models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: We report a new synthesis of best estimates of the inputs of fixed nitrogen to the world ocean via atmospheric deposition and compare this to fluvial inputs and dinitrogen fixation. We evaluate the scale of human perturbation of these fluxes. Fluvial inputs dominate inputs to the continental shelf, and we estimate that about 75% of this fluvial nitrogen escapes from the shelf to the open ocean. Biological dinitrogen fixation is the main external source of nitrogen to the open ocean, i.e., beyond the continental shelf. Atmospheric deposition is the primary mechanism by which land-based nitrogen inputs, and hence human perturbations of the nitrogen cycle, reach the open ocean. We estimate that anthropogenic inputs are currently leading to an increase in overall ocean carbon sequestration of ~0.4% (equivalent to an uptake of 0.15 Pg C yr−1 and less than the Duce et al. (2008) estimate). The resulting reduction in climate change forcing from this ocean CO2 uptake is offset to a small extent by an increase in ocean N2O emissions. We identify four important feedbacks in the ocean atmosphere nitrogen system that need to be better quantified to improve our understanding of the perturbation of ocean biogeochemistry by atmospheric nitrogen inputs. These feedbacks are recycling of (1) ammonia and (2) organic nitrogen from the ocean to the atmosphere and back, (3) the suppression of nitrogen fixation by increased nitrogen concentrations in surface waters from atmospheric deposition, and (4) increased loss of nitrogen from the ocean by denitrification due to increased productivity stimulated by atmospheric inputs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: The relationships between tectonic processes, magmatism, and hydrothermal venting along ∼600 km of the slow-spreading Mariana back-arc between 12.7°N and 18.3°N reveal a number of similarities and differences compared to slow-spreading mid-ocean ridges. Analysis of the volcanic geomorphology and structure highlights the complexity of the back-arc spreading center. Here, ridge segmentation is controlled by large-scale basement structures that appear to predate back-arc rifting. These structures also control the orientation of the chains of cross-arc volcanoes that characterize this region. Segment-scale faulting is oriented perpendicular to the spreading direction, allowing precise spreading directions to be determined. Four morphologically distinct segment types are identified: dominantly magmatic segments (Type I); magmatic segments currently undergoing tectonic extension (Type II); dominantly tectonic segments (Type III); and tectonic segments currently undergoing magmatic extension (Type IV). Variations in axial morphology (including eruption styles, neovolcanic eruption volumes, and faulting) reflect magma supply, which is locally enhanced by cross-arc volcanism associated with N-S compression along the 16.5°N and 17.0°N segments. In contrast, cross-arc seismicity is associated with N-S extension and increased faulting along the 14.5°N segment, with structures that are interpreted to be oceanic core complexes—the first with high-resolution bathymetry described in an active back-arc basin. Hydrothermal venting associated with recent magmatism has been discovered along all segment types.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-08
    Description: The spatial distribution, biogeochemical cycle and external sources of dissolved cobalt (DCo) were investigated in the southeastern Atlantic and the Southern Ocean between 33°58′S and 57°33′S along the Greenwich Meridian during the austral summer 2008 in the framework of the International Polar Year. DCo concentrations were measured by flow-injection analysis and chemiluminescence detection in filtered (0.2 μm), acidified and UV-digested samples at 12 deep stations in order to resolve the several biogeochemical provinces of the Antarctic Circumpolar Current and to assess the vertical and frontal structures in the Atlantic sector of the Southern Ocean. We measured DCo ranging from 5.73 ± 1.15 pM to 72.9 ± 4.51 pM. The distribution of DCo was nutrient-like in surface waters of the subtropical domain with low concentrations in the euphotic layer due to biological uptake. The biological utilization of dissolved cobalt was proportional to that of phosphate in the subtropical domain with a DCo:HPO42− depletion ratio of ~ 44 μM M−1. In deeper waters the distribution indicated remineralization of DCo and inputs from the margins of South Africa with lateral advection of enriched intermediate and deep waters to the southeastern Atlantic Ocean. In contrast the vertical distribution of DCo changed southward, from a nutrient-like distribution in the subtropical domain to scavenged-type behavior in the domain of the Antarctic Circumpolar Current and conservative distribution in the Weddell Gyre. There the cycle of DCo featured low biological removal by Antarctic diatoms with input to surface waters by snow, removal in oxygenated surface waters, and dissolution and stabilization in the low-oxygenated Upper Circumpolar Deep Waters. DCo distributions and physical hydro-dynamics features also suggest inputs from the Drake Passage and the southwestern Atlantic to the 0° meridian along the eastward flow of the Antarctic Circumpolar Current. Bottom enrichment of DCo in the Antarctic Bottom Waters was also evident, together with increasing water-mass pathway and aging, possibly due to sediment resuspension and/or mixing with North Atlantic Deep waters in the Cape Basin. Overall atmospheric input of soluble Co by dry aerosols to the surface waters was low but higher in the ACC domain than in the northern part of the section. At the highest latitudes, it is possible that snowfall could be a source of DCo to surface waters. Tentative budgets for DCo in the mixed layer of the subtropical and the ACC domains have been constructed for each biogeochemical region encountered during the cruise. The estimated DCo uptake flux was found to be the dominant cobalt flux along the section. This flux decreases southward, which is consistent with the observations that DCo shows a southward transition from nutrient-like towards conservative distribution in the mixed layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Chemistry, 120 (1-4). pp. 4-13.
    Publication Date: 2017-08-22
    Description: The fraction of atmospherically deposited iron which dissolves in seawater, or becomes available to phytoplankton for growth, is a key determinant of primary productivity in many open ocean regions. As such this parameter plays an important part in the global oceanic cycles of iron and carbon, and yet the factors that control iron dissolution from aerosol are very poorly understood. In this manuscript we seek to synthesise the available knowledge of these factors, which operate in the atmosphere and in seawater. A conceptual model of the overall aerosol iron solubility is presented, in which we liken the various controls on iron solubility to sets of parallel electrical resistors. We also discuss experimental methods for the determination of iron solubility and make recommendations for future studies in this area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-01
    Description: Atmospheric deposition fluxes of soluble nutrients (N, P, Si, Fe, Co, Zn) to the tropical North Atlantic were determined during cruise M55 of the German SOLAS programme. Nutrient fluxes were highest in the east of the section along 10°N, owing to the proximity of source regions in West Africa and Europe, and lowest in the west, for both dry and wet deposition modes. In common with other recent studies, atmospheric P and Si inputs during M55 were strongly depleted relative to the stoichiometry of phytoplankton Fe, N, P and Si requirements. Atmospheric N inputs were equivalent to 0.1–4.7% of observed primary productivity during the cruise. Atmospheric nutrient supply was also compared to observed nitrogen fixation rates during M55. While atmospheric Fe supply may have been sufficient to support N fixation (depending on the relationship between our simple Fe leaching experiment and aerosol Fe dissolution in seawater), atmospheric P supply was well below the required rate. The stable nitrogen isotope composition of nitrate–N in aerosol and rain was also determined. Results of a simple model indicate that atmospheric deposition and nitrogen fixation introduce similar amounts of isotopically light nitrogen into surface waters of the study region. This implies that nitrogen isotope-based methods would overestimate nitrogen fixation here by a factor of 2, if atmospheric inputs were not taken into account.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...