ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (2)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Enochs, I C; Manzello, Derek P; Donham, E M; Kolodziej, Graham; Okano, R; Johnston, Lyza; Young, Craig S; Iguel, John; Edwards, C B; Fox, M D; Valentino, L; Johnson, Steven; Benavente, D; Clark, S J; Carlton, R; Burton, T; Eynaud, Y; Price, Nichole N (2015): Shift from coral to macroalgae dominance on a volcanically acidified reef. Nature Climate Change, 5(12), 1083-1088, https://doi.org/10.1038/nclimate2758
    Publication Date: 2024-03-15
    Description: Rising anthropogenic CO2 in the atmosphere is accompanied by an increase in oceanic CO2 and a concomitant decline in seawater pH (ref. 1). This phenomenon, known as ocean acidification (OA), has been experimentally shown to impact the biology and ecology of numerous animals and plants2, most notably those that precipitate calcium carbonate skeletons, such as reef-building corals3. Volcanically acidified water at Maug, Commonwealth of the Northern Mariana Islands (CNMI) is equivalent to near-future predictions for what coral reef ecosystems will experience worldwide due to OA. We provide the first chemical and ecological assessment of this unique site and show that acidification-related stress significantly influences the abundance and diversity of coral reef taxa, leading to the often-predicted shift from a coral to an algae-dominated state4, 5. This study provides field evidence that acidification can lead to macroalgae dominance on reefs.
    Keywords: Alkalinity, total; Aragonite saturation state; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; CO2 vent; Coast and continental shelf; Community composition and diversity; Entire community; EXP; Experiment; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Individuals; Maug_Island; Name; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Rocky-shore community; Salinity; Site; Temperature, water; Tropical; Type
    Type: Dataset
    Format: text/tab-separated-values, 9300 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: There is a long history of examining the impacts of nutrient pollution and pH on coral reefs. However, little is known about how these two stressors interact and influence coral reef ecosystem functioning. Using a six-week nutrient addition experiment, we measured the impact of elevated nitrate (NO−3) and phosphate (PO3−4) on net community calcification (NCC) and net community production (NCP) rates of individual taxa and combined reef communities. Our study had four major outcomes: (i) NCC rates declined in response to nutrient addition in all substrate types, (ii) the mixed community switched from net calcification to net dissolution under medium and high nutrient conditions, (iii) nutrients augmented pH variability through modified photosynthesis and respiration rates, and (iv) nutrients disrupted the relationship between NCC and aragonite saturation state documented in ambient conditions. These results indicate that the negative effect of NO−3 and PO3−4 addition on reef calcification is likely both a direct physiological response to nutrients and also an indirect response to a shifting pH environment from altered NCP rates. Here, we show that nutrient pollution could make reefs more vulnerable to global changes associated with ocean acidification and accelerate the predicted shift from net accretion to net erosion.
    Keywords: Alkalinity, total; Animalia; Aquarium number; Aragonite saturation state; Ash free dry mass; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Coconut_Island; DATE/TIME; Dry mass; Entire community; EXP; Experiment; Flow rate; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gracillaria salicornia; Gross primary production of oxygen; Identification; Laboratory experiment; Light mode; Macroalgae; Macro-nutrients; Montipora capitata; Net calcification rate of calcium carbonate; Net primary production of oxygen; Nitrate and Nitrite; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phosphate; Plantae; Porites compressa; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Residence time; Respiration rate, oxygen; Rhodophyta; Rocky-shore community; Salinity; Silicate; Single species; Substrate type; Surface area; Temperature, water; Treatment; Tropical; Type; Volume
    Type: Dataset
    Format: text/tab-separated-values, 27720 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...