ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: ZSP-201-76/18
    In: CRREL Report, 76-18
    Description / Table of Contents: Three surface elevation and ice thickness profiles obtained during the 1972 Arctic Ice Dynamics Joint Experiment on a multiyear ice floe were analyzed to obtain relationships between surface elevation, thickness and physical properties of the ice. It was found that for ice freeboards from 0.10 m to 1.05 m above sea level a linear relationship between ice density and freeboard could be postulated. The equation for the regression line is: Ice density = -194f' + 974 kg/cu m where f' is the ice freeboard plus snow depth in ice equivalent at the point in question. This statistical relationship is consistent with observed physical properties, which indicate that as the ice freeboard increases, ice salinity decreases and the higher freeboard or thicker ice therefore decreases in density. Using this variable density with freeboard relationship, a model was constructed to predict ice thickness, given ice freeboard and snow depth alone. This prediction is desirable, since snow depth and freeboard are relatively easy to obtain, whereas ice thickness can usually be obtained only by drilling through the ice. The model was compared with two other models. It was found that the variable density prediction model gave the best approximation to observed ice thickness, with a standard error between the measured and predicted value of about 0.4 m, compared with errors from 50 to 100% higher for the other two models.
    Type of Medium: Series available for loan
    Pages: v, 25 Seiten , Illustrationen
    Series Statement: CRREL Report 76-18
    Language: English
    Note: Contents Abstract Preface Summary Introduction Previous work Results Models for predicting thickness from ice freeboard Comparison between measured and predicted thicknesses Spectral behavior of measured and predicted profiles Comparisons of ice thickness using airborne laser profilometry Conclusions Literature cited Appendix A: Misgivings on isostatic imbalance as a mechanism for sea ice cracking
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Series available for loan
    Series available for loan
    Hanover, NH : Corps of Engineers, U.S. Army, Cold Regions Research and Engineering Laboratory,
    Associated volumes
    Call number: ZSP-202-329
    In: Research report
    Description / Table of Contents: CONTENTS: General Introduction. - Part I. Spatial and temporal variations in sea ice deformatfon. - Introduction. - Approach. - Site location and data collection procedures. - Data analysis. - Strain results. - Comparison of mesoscale deformation with macroscale deformation. - Nature of the ice pack rotation. - Conciusion. - Literature cited. - Part Il. Comparison of mesoscale strain measurements with linear drift theory predictions. - Introduction. - List of symbols. - Linear drift equations. - Ice drift solutions. - Comparison of theory with mesoscale measurements. - A more general linear constitutive law. - Conclusions. - Literature cited. - Appendix Relative magnitudes of differential drift forces. - Abstract.
    Description / Table of Contents: Measurements of mesoscale sea ice deformation over a region approximately 20 km in diameter were made over a five-week period in the spring of 1972 at the main AIDJEX camp in the Beaufort Sea. They have been analyzed to determine nonlinearities in the ice velocity field (due to the discrete small-scale nature of the ice pack), as well as a continuum mode of deformation represented by a least squares strain rate tensor and vorticity. The deformation rate time series between Julian day 88 and 113 exhibited net areal changes as large as 3% and deformation rates up to 0.16% per hour. In the principal axis coordinate system, the strain rate typically exhibited a much larger compression (or extension) along one axis than along the other. Persistent cycles at ~12-hour wavelengths were observed in the divergence rate. A comparison of the average residual error with the average strain rate magnitude indicated that strains measured on a scale of 10 km or greater can serve as a valid measure of the continuum motion of the sea ice. This conclusion is also substantiated by a comparison between the mesoscale deformation, and macroscale deformation measured over a ~100-km-diameter region. Vorticity calculations indicate that at low temporal frequencies ( 〈 0.04 hr^-1 ) the whole mesoscale array rotates essentially as an entity and consequently the low frequency vorticity can accurately be estimated from the rotation of a single floe. (Part I) A comparison of mesoscale strain measurements with the atmospheric pressure field and the wind velocity field indicated that the ice divergence rate and vorticity followed the local pressure and wind divergence with significant correlation. For low atmospheric pressures and converging winds, the divergence rate was negative with the vorticity being counterclockwise. The inverse behavior was observed for high pressures and diverging winds. This behavior agreed with predictions based upon the infinite boundary solution of a linearized drift theory in the absence of gradient current effects and using the constitutive law proposed by Glen for pack ice. The best least squares values of the constitutive law parameters [Eta] and [Zeta] were found to be given by ~10^12 kg sec^-1. Using typical divergence rates, these values yielded compressive stresses of the magnitude of 10^5 N m^-1, which are similar to values suggested by the Parmerter and Coon ridge model. In general, the infinite boundary solution of the linear drift equation indicates that in a low pressure region that is reasonably localized in space, the ice would be expected to converge for high compactness (winter) and diverge for low compactness (summer). Calculations were also carried out using a more general linear viscoelastic constitutive law that includes memory effects and that includes a generalized Hooke's law as well as the Glen law as special cases. A best fit of this more general calculation with strain measurements indicates, overall, a better agreement with viscous behavior than with elastic behavior, with the frequency behavior of the estimated "viscosities" similar to the Glen law behavior at temporal frequencies less than ~0.01 hr^-1 (Part II)
    Type of Medium: Series available for loan
    Pages: v, 37 Seiten , Illustrationen
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory, CRREL, US Army Material Command 329
    Language: English
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...