ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • 73  (2)
  • unknown
  • seismic processing/methodology
  • STRUCTURAL MECHANICS
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 29 (1982), S. 63-68 
    ISSN: 1432-0630
    Keywords: 72.40 ; 73 ; 85 ; 60
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The electrical properties ofn +-window layers inp-i-n a-Si:H solar cells were characterised as a function ofn +-layer thickness, $$d_{n^ + } $$ , by measuring firstly the activation energyE a of the dark conductivity and secondly the built-in potentialV bi of the cells.E a was found to increase with decreasing $$d_{n^ + } $$ attaining values as high as 0.8 eV for $$d_{n^ + } $$ ≅5nm; bulk values, e.g.E a ≅. 2eV in the amorphous andE a〈0.01 eV in the microcrystalline case, were only observed for $$d_{n^ + } $$ 〉20nm and for $$d_{n^ + } $$ 〉200nm, respectively. In contrast,V bi did not depend on $$d_{n^ + } $$ at all and was further found to be consistent with expectations based on the Fermi level positions in bulkn + andp +-material. As a consequenceE a in very thin films can no longer be considered as a measure of (E C −E F), the distance of the Fermi level from the conduction band edge. The apparent inconsistency inherent to theE a and theV bi results can be resolved by assuming that the deposition of then +-material proceeds via the growth and coalescence of small islands.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 13 (1977), S. 255-259 
    ISSN: 1432-0630
    Keywords: 73
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract After bombarding silicon single crystals with heavy neon ion doses, the resulting amorphous surface layer has been found to be electrically insulated from the underlying bulk material. Current-voltage characteristics indicate the formation of a junction between the crystalline and the damaged layer. As a consequence, the electrical properties of the amorphous layer can be measured at low temperatures up to about 230 K and considerably beyond room temperature, if thick crystal wafers and silicon-on-sapphire (SOS) samples, respectively, are used.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...