ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biochemical genetics 15 (1977), S. 173-193 
    ISSN: 1573-4927
    Keywords: Serratia marcescens ; pyrimidine biosynthesis ; enzyme aggregation ; regulation ; bacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Orotidine-5′-monophosphate pyrophosphorylase (OMPppase, E.C. 2.4.2.10) and orotidylate decarboxylase (OMPdecase, E.C. 4.1.1.23) were purified from Serratia marcescens HY. These enzymes required physical association for maximal catalytic activities and formed a fragile complex with dihydroorotase (DHOase, E.C. 3.5.2.3.). OMPppase reversibly lost 50% of its activity upon separation from DHOase. The kinetic characteristics of OMPppase were modified by this separation. In the presence of DHOase, the K ms for PRPP and orotate were stoichiometric: 2.3×10−6 m and 2.6×10−6 m, respectively. Following separation, the K ms were significantly different: 1.3 × 10−6 m for PRPP and 4.1×10−6 m for orotate. OMPppase and OMPdecase could be reversibly separated by acrylamide gel electrophoresis, but the separation was accompanied by a loss of catalytic efficiency for both enzymes. DHOase readily associated into multiple molecular forms and could not be purified. The DHOase-OMPppase-OMPdecase interactions demonstrate that a weakly aggregated, multifunctional enzyme complex participates in the biosynthesis of pyrimidine nucleotides in S. marcescens. This unique association of nonsequential biosynthetic enzymes may represent a larger complex which provides a channeling or regulatory unit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4927
    Keywords: Serratia marcescens ; pyrimidine biosynthesis ; coordinate expression ; regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The coordinate expression of four sequential enzymes in the de novo pyrimidine pathway may result from the interaction of the various polypeptides of the pathway in Serratia marcescens rather than represent some unit of transcriptional regulation. These interactions were defined by examining the polypeptide association observed in extracts of parental and mutant strains in a series of pleiotropic pyrimidine auxotrophs. Extracts of pyrE auxotrophs [possessing dihydroorotate (DHOase) activity but no orotidine-5′-monophosphate pyrophosphorylase (OMPppase) activity] stimulate OMPppase activity in extracts of pyrC auxotrophs (possessing reduced OMPppase activity but no DHOase activity). Separation by molecular weight on Sephadex G200 has suggested an aggregation between the final two enzymes, OMPppase and OMPdecarboxylase (OMPdecase), and the earlier enzyme, DHOase. The reduction of OMPppase activity in pyrC auxotrophs (encoding either a defective polypeptide or reduced levels) is explained by the lack of adequate levels of DHOase for aggregate formation. Such polypeptide interactions appear to mimic the coordinate formation of polypeptides which are controlled as a unit of regulation. The measurable levels of enzymatic activity vary in a quantitatively identical manner, but the variation does not result directly from the regulation of polypeptide formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...