Skip to main content
Log in

Pyrimidine biosynthesis in Serratia marcescens: Polypeptide interactions of three nonsequential enzymes

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Orotidine-5′-monophosphate pyrophosphorylase (OMPppase, E.C. 2.4.2.10) and orotidylate decarboxylase (OMPdecase, E.C. 4.1.1.23) were purified from Serratia marcescens HY. These enzymes required physical association for maximal catalytic activities and formed a fragile complex with dihydroorotase (DHOase, E.C. 3.5.2.3.). OMPppase reversibly lost 50% of its activity upon separation from DHOase. The kinetic characteristics of OMPppase were modified by this separation. In the presence of DHOase, the K ms for PRPP and orotate were stoichiometric: 2.3×10−6 m and 2.6×10−6 m, respectively. Following separation, the K ms were significantly different: 1.3 × 10−6 m for PRPP and 4.1×10−6 m for orotate. OMPppase and OMPdecase could be reversibly separated by acrylamide gel electrophoresis, but the separation was accompanied by a loss of catalytic efficiency for both enzymes. DHOase readily associated into multiple molecular forms and could not be purified. The DHOase-OMPppase-OMPdecase interactions demonstrate that a weakly aggregated, multifunctional enzyme complex participates in the biosynthesis of pyrimidine nucleotides in S. marcescens. This unique association of nonsequential biosynthetic enzymes may represent a larger complex which provides a channeling or regulatory unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken, D. M., Lue, P. F., and Kaplan, J. G. (1975). Kinetics and reaction mechanism of the carbamylphosphate synthetase of a multienzyme aggregate from yeast. Can. J. Biochem. 53721.

    Google Scholar 

  • Appel, S. H. (1968). Purification and kinetic properties of brain orotidine 5′-phosphate decarboxylase. J. Biol. Chem. 2433924.

    Google Scholar 

  • Beckwith, J. R., Pardee, A. B., Austrian, R., and Jacob, F. (1962). Coordination of the synthesis of the enzymes in the pyrimidine pathway. J. Mol. Biol. 5618.

    Google Scholar 

  • Brown, G. K., Fox, R. M., and O'Sullivan, W. J. (1975). Interconversion of different molecular weight forms of human erythrocyte orotidylate decarboxylase. J. Biol. Chem. 2507352.

    Google Scholar 

  • Calvo, J. M., and Fink, G. R. (1971). Regulation of biosynthetic pathways in bacteria and fungi. Ann. Rev. Biochem. 40943.

    Google Scholar 

  • Caroline, D. F. (1969). Pyrimidine synthesis in Neurospora crassa: Gene-enzyme relationships. J. Bacteriol. 1001371.

    Google Scholar 

  • Eakin, R. T., and Mitchell, H. K. (1969). A mitochondrial oxidase system in Neurospora crassa. Arch. Biochem. Biophys. 134160.

    Google Scholar 

  • Fausto, N. (1969). The control of RNA synthesis during liver regeneration: OMP pyrophosphorylase and decarboxylase activities in normal and regenerating liver. Biochim. Biophys. Acta 18266.

    Google Scholar 

  • Fox, I. H., and Kelley, W. N. (1971). Human phosphoribosyl-pyrophosphate synthetase. J. Biol. Chem. 2465739.

    Google Scholar 

  • Freiden, C. (1971). Protein-protein interaction and enzymatic activity. Ann. Rev. Biochem. 40653.

    Google Scholar 

  • Gerhart, J. C., and Pardee, A. B. (1962). The enzymology of control by feedback inhibition. J. Biol. Chem. 237891.

    Google Scholar 

  • Ginsburg, A., and Stadtman, E. R. (1970). Multienzyme systems. Ann. Rev. Biochem. 39429.

    Google Scholar 

  • Grobner, W., and Kelley, W. N. (1975). Effect of allopurinol and its metabolic derivatives on the configuration of human orotate phosphoriboxyltransferase and orotidine 5′-phosphate decarboxylase. Biochem. Pharmacol. 24379.

    Google Scholar 

  • Hutson, J. Y., and Downing, M. (1968). Pyrimidine biosynthesis in Lactobacillus leichmannii. J. Bacteriol. 961249.

    Google Scholar 

  • Isaac, J. H., and Holloway, B. W. (1968). Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. J. Bacteriol. 961732.

    Google Scholar 

  • Jones, M. E. (1971). Regulation of pyrimidine and arginine biosynthesis in mammals. Adv. Enzyme Regul. 919.

    Google Scholar 

  • Jones, M. E. (1972). Regulation of uridylic acid biosynthesis in eukaryotic cells. Cur. Top. Cell. Regul. 6227.

    Google Scholar 

  • Karibian, D., and Couchoud, P. (1974). Dihydro-orotate oxidase of Escherichia coli K12: Purification, properties, and relation to the cytoplasmic membrane. Biochim. Biophys. Acta 364218.

    Google Scholar 

  • Kasbekar, E. G., Nagabhushanam, A., and Greenberg, D. M. (1964). Purification and properties of orotic acid-decarboxylating enzymes from calf thymus. J. Biol. Chem. 2394245.

    Google Scholar 

  • Labrum, E. L., and Bunting, M. I. (1953). Spontaneous and induced color variation of the HY strain of Serratia marcescens. J. Bacteriol. 65394.

    Google Scholar 

  • LaCroute, F. (1968). Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae. J. Bacteriol. 95825.

    Google Scholar 

  • Lieberman, I., Kornberg, A., and Simms, E. S. (1954). Enzymatic synthesis of pyrimidine and purine nucleotides. II. Orotidine-5′-phosphate pyrophosphorylase and decarboxylase. J. Amer. Chem. 762844.

    Google Scholar 

  • Lieberman, I., Kornberg, A., and Simms, E. S. (1955). Enzymatic synthesis of pyrimidine nucleotides orotidine-5′-phosphate and uridine-5′-phosphate. J. Biol. Chem. 215403.

    Google Scholar 

  • Long, C. W., Levitzki, A., and Koshland, D. E., Jr. (1970). The subunit interactions of cytidine triphosphate synthetase. J. Biol. Chem. 24580.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193265.

    Google Scholar 

  • Matsuura, T., and Jones, M. E. (1974). Subcellular localization in the Ehrlich ascites cell of the enzyme which oxidizes dehydroorotate to orotate. In Richter, D. (ed.), The Lipmann Symposium: Energy, Regulation and Biosynthesis in Molecular Biology, Walter de Gruyter, Berlin, pp. 422–434.

    Google Scholar 

  • Miller, R. W. (1975). A high molecular weight dihydroorotate dehydrogenase of Neurospora crassa. Purification and properties of this enzyme. Can. J. Biochem. 531288.

    Google Scholar 

  • Miller, R. W., and Curry, J. R. (1969). Mammalian dihydroorotate-ubiquinone reductase complex. II. Correlation with cytochrome oxidase, mode of linkage with the cytochrome chain, and general properties. Can. J. Biochem. 47725.

    Google Scholar 

  • Mori, M., and Tatibana, M. (1973). Dissociation by elastase digestion of enzyme complex catalyzing the initial steps of pyrimidine biosynthesis in rat liver. Biochem. Biophys. Res. Commun. 541525.

    Google Scholar 

  • Mori, M., Ishida, H., and Tatibana, M. (1975). Aggregation states and catalytic properties of the multienzyme complex catalyzing the initial steps of pyrimidine biosynthesis in rat liver. Biochemistry 142622.

    Google Scholar 

  • Nagano, Y., Samjima, H., and Kinoshita, S. (1966). Conversion of orotic acid to uridine-5′-monophosphate by enzymes of Micrococcus glutamicus. Agr. Biol. Chem. 3083.

    Google Scholar 

  • O'Donovan, G. A., and Neuhard, J. (1970). Pyrimidine metabolism in microorganisms. Bacteriol. Rev. 34278.

    Google Scholar 

  • Ornstein, L. (1961). Disc Electrophoresis, Canal Industrial Corp. Bethesda, Md.

    Google Scholar 

  • Potvin, B. W., Kelleher, R. J., Jr., and Gooder, H. (1975). Pyrimidine biosynthetic pathway of Bacillus subtilis. J. Bacteriol. 123604.

    Google Scholar 

  • Pynadath, T. L., and Fink, R. M. (1967). Studies of orotidine-5′-phosphate decarboxylase in Neurospora crassa. Arch. Biochem. Biophys. 118185.

    Google Scholar 

  • Reichard, P. (1959). The enzymic synthesis of pyrimidines. Adv. Enzymol. 21263.

    Google Scholar 

  • Shoaf, W. T., and Jones, M. E. (1973). Uridylic acid synthesis in Ehrlich ascites carcinoma: Properties, subcellular distribution, and nature of enzyme complexes of the six biosynthetic enzymes. Biochemistry 124039.

    Google Scholar 

  • Umezu, K., Amaya, T., Yoshimoto, A., and Tomita, K. (1971). Purification and properties of orotidine-5′-phosphate pyrophosphorylase and orotidine-5′-phosphate decarboxylase from baker's yeast. J. Biochem. 70249.

    Google Scholar 

  • Warburg, O., and Christian, W. (1942). Distributed by Calbiochem. Biochem. Z. 310384.

    Google Scholar 

  • Wild, J. R., and Belser, W. L. (1977). Pyrimidine biosynthesis in Serratia marcescens: A possible role for nonsequential enzyme interactions in mimicking coordinate gene expression. Biochem. Genet. 15157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from the National Science Foundation (NSF GB 5811) and the Office of Naval Research (Nonr 4413). One of us (J.W.) was a National Science Foundation Graduate Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wild, J.R., Belser, W.L. Pyrimidine biosynthesis in Serratia marcescens: Polypeptide interactions of three nonsequential enzymes. Biochem Genet 15, 173–193 (1977). https://doi.org/10.1007/BF00484560

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00484560

Key words

Navigation