ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5079
    Keywords: chlorophyll antenna size ; damage and repair cycle ; Dunaliella salina ; photoinhibition ; photosynthesis ; Photosystem-II ; photosystem stoichiometry ; productivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract High-light (HL) grown Dunaliella salina cells exhibit lower pigment content, a highly truncated chlorophyll (Chl) antenna size, and accumulation of photodamaged PS II centers in the chloroplast thylakoids (chronic photoinhibition). In HL-grown cells, the rate of photosynthesis saturated at higher irradiances and the quantum yield was lower compared to that of normally-pigmented low-light (LL) grown cells. In spite of these deficiencies, the light-saturated rate of photosynthesis for the HL-cells, when measured on a per chlorophyll basis, was ∼3 times greater than that of the LL-grown cells. To delineate the effect of photoinhibition from the Chl antenna size on quantum yield and rate of photosynthesis, HL-acclimated cells were switched to LL-conditions. Repair of photodamaged PS II, estimated from the recovery of functional PS II centers and from the increase in the quantum yield of photosynthesis, occurred with a half-time of ∼1 h. Chlorophyll accumulation in the cells occurred with a half-time of ∼4 h. The differential kinetics in repair versus Chl accumulation provided a ‘window of opportunity’, within about 2–3 h after the HL→LL shift, when cells exhibited a high quantum yield of photosynthesis, a small Chl antenna size and a light-saturated rate that was ∼6–9 times greater than that of the normally pigmented LL-grown cells. The work provides insight on the temporal sequence of events at the chloroplast and thylakoid membrane levels, leading from a chronic photoinhibition of PS II to repair and recovery. It is suggested that it is possible to maximize photosynthetic productivity and light utilization in mass microalgal cultures by minimizing the light-harvesting Chl antenna size of the photosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5176
    Keywords: Chlorophyll antenna size ; damage and repair cycle ; photon use efficiency ; photosynthesis ; photoinhibition ; Dunaliella salina
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The photon use efficiencies and maximal rates of photosynthesis in Dunaliella salina (Chlorophyta) cultures acclimated to different light intensities were investigated. Batch cultures were grown to the mid-exponential phase under continuous low-light (LL: 100 μmol photon m-2 s-1) or high-light (HL: 2000 μmol photon m-2 s-1) conditions. Under LL, cells were normally pigmented (deep green) containing ∼500 chlorophyll (Chl) molecules per photosystem II (PSII) unit and ∼250 Chl molecules per photosystem I (PSI). HL-grown cells were yellow-green, contained only 60 Chl per PSII and 100 Chl per PSI and showed signs of chronic photoinhibition, i.e., accumulation of photodamaged PSII reaction centers in the chloroplast thylakoids. In LL-grown cells, photosynthesis saturated at ∼200 μmol photon m-2 s-1 with a rate (Pmax) of ∼100 mmol O2 (mol Chl)-1 s-1. In HL-grown cells, photosynthesis saturated at much higher light intensities, i.e. ∼2500 μmol photon m-2 s-1, and exhibited a three-fold higher Pmax (∼300 mmol O2 (mol Chl)-1 s-1) than the normally pigmented LL-grown cells. Recovery of the HL-grown cells from photoinhibition, occurring prior to a light-harvesting Chl antenna size increase, enhanced Pmax to ∼675 mmol O2 (mol Chl)-1 s-1. Extrapolation of these results to outdoor mass culture conditions suggested that algal strains with small Chl antenna size could exhibit 2–3 times higher productivities than currently achieved with normally pigmented cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...