ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • nanoparticles  (1)
  • 1
    ISSN: 1435-1536
    Keywords: Small-angle x-ray scattering (SAXS) ; nanoparticles ; acrylic acid copolymer ; fractal surface
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Nanoparticles are possible carriers for drug delivery. Copolymer nanoparticles of acrylic acid, acrylic amide, acrylic butylester, and methacrylic methylester (CAA) dispersed in water and in 0.15 M NaCl-solution were investigated by small-angle x-ray scattering (SAXS) experiments. The particles were characterized in terms of parameters relevant for the in vivo distribution: particle shape and diameter, size distribution, surface structure, and their organization within tight systems. The CAA-nanoparticles exist in at least three populations of spheres with two minor subpopulations having radii of about 32 and 66 nm and the main moiety around 45 nm. The degree of polydispersity isR w/R N=1.05. The subpopulations possess different hydrophobic areas on their surfaces, leading to different recognition by opsonins in vivo and different organ distribution and clearance velocity. The particles are compact without channels and holes, which is proved by low internal hydrationw=0.22 g H2O/g polymer. Drugs and coating surfactants will interact mainly with the outer surface and not tunnel into the carriers. The surface of the nanoparticles is fractal with a dimensionD=2.3. Probe-molecules with dimensions less than 11.4 nm in diameter will find a larger contact area than expected from the sphere radius. Adsorption rate and position of the arrival of surfactants, and possibly opsonins, may be affected thereby. The negative charges on the CAA-nanoparticle surface are nearly completely screened in physiological NaCl-solutions by counter-ions. Therefore, surface charges hamper carrier-cell interaction at short distances only and do not prevent specific recognition and clearance by the reticuloendothelial system (RES).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...