Skip to main content
Log in

Acrylic acid copolymer nanoparticles for drug delivery: structural characterization of nanoparticles by small-angle x-ray scattering

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nanoparticles are possible carriers for drug delivery. Copolymer nanoparticles of acrylic acid, acrylic amide, acrylic butylester, and methacrylic methylester (CAA) dispersed in water and in 0.15 M NaCl-solution were investigated by small-angle x-ray scattering (SAXS) experiments. The particles were characterized in terms of parameters relevant for the in vivo distribution: particle shape and diameter, size distribution, surface structure, and their organization within tight systems.

The CAA-nanoparticles exist in at least three populations of spheres with two minor subpopulations having radii of about 32 and 66 nm and the main moiety around 45 nm. The degree of polydispersity isR w/R N=1.05. The subpopulations possess different hydrophobic areas on their surfaces, leading to different recognition by opsonins in vivo and different organ distribution and clearance velocity. The particles are compact without channels and holes, which is proved by low internal hydrationw=0.22 g H2O/g polymer. Drugs and coating surfactants will interact mainly with the outer surface and not tunnel into the carriers. The surface of the nanoparticles is fractal with a dimensionD=2.3. Probe-molecules with dimensions less than 11.4 nm in diameter will find a larger contact area than expected from the sphere radius. Adsorption rate and position of the arrival of surfactants, and possibly opsonins, may be affected thereby. The negative charges on the CAA-nanoparticle surface are nearly completely screened in physiological NaCl-solutions by counter-ions. Therefore, surface charges hamper carrier-cell interaction at short distances only and do not prevent specific recognition and clearance by the reticuloendothelial system (RES).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verdun C, Couvreur P, Vranckx H, Lenaerts V, Roland M (1986) J Controlled Release 3:205

    Google Scholar 

  2. Tarcha P (1991) Polymers for Controlled Drug Delivery, CRC Press, Boca Raton Ann Arbor, Boston

    Google Scholar 

  3. Müller RH, Davis SS, Illum L, Mak E (1986) Particle charge and surface hydrophobicity of colloidal drug carriers. In: Gregoriadis S, Senior J, Poste G (eds) Targeting of Drugs with Synthetic Systems) Plenum Press, New York, p 239

    Google Scholar 

  4. Van Oss CJ, Gillman CF, Neumann HW (1975) Phagocytic engulfment and cell adhesiveness as cellular surface phenomena, Marcel Dekker, New York

    Google Scholar 

  5. Van Oss CJ, Gillman CF, Neumann HW (1984) Ann NY Acad Sci 416:332

    Google Scholar 

  6. Müller RH (1991) Colloidal Carriers for Controlled Drug Delivery and Targeting-Modification, Characterization and in Vivo Distribution. Wissenschaftliche Verlagsgesellschaft. CRC Press, Stuttgart/Boca Raton

    Google Scholar 

  7. Kreuter J (1983) Int J Pharm 14:43

    Google Scholar 

  8. Pfeifer P (1987) In: Laszko P (ed) Preperative Chemistry, Academic Press, New York, p 13

    Google Scholar 

  9. Lukowski G, Müller RH, Müller BW, Dittgen M (1992) Int J Pharm 84(1):23

    Google Scholar 

  10. Ametani K, Fujita H (1978) Japanese Journal Appl Physics 17:17

    Google Scholar 

  11. Damaschun G, Pürschel HV (1969b) Monatshefte Chemie 100:274

    Google Scholar 

  12. Müller JJ (1992) In: Programmpaket APX 63, Small-Angle X-Ray Scattering, Freiberger Präzisionsmechanik GmbH, Freiberg, p 1

    Google Scholar 

  13. Marquardt DW (1963) J Soc appl Math 11:431

    Google Scholar 

  14. Glatter O, Kratky O (1982) In: Small-Angle X-ray Seattering. Academic Press, London

    Google Scholar 

  15. Feigin LA, Svergun DI (1987) In: Taylor GW (ed) Structure Analysis by Small-Angle X-Ray and Neutron Scattering, Plenum Press, New York

    Google Scholar 

  16. Walter G, Gerber T, Kranold R (1983) Studia biophysica 97:129

    Google Scholar 

  17. Kratky O, Pilz I, Schmitz PJ (1966) J Colloid and Interface Sci 21:24

    Google Scholar 

  18. Stabinger H, Kratky O (1978) Makrom Chem 179:1655

    Google Scholar 

  19. Plestil J, Pospisil H, Ostanevich Yu M, Degovics G (1991) J Appl Cryst 24:659

    Google Scholar 

  20. Guinier A, Fournet G, Walker CB, Yudowitch KL (1955) In: Small-Angle Scattering of X-Rays. John Wiley & Sons, New York

    Google Scholar 

  21. Enderby JE, March NH (1965) Adv in Physics 14:453

    Google Scholar 

  22. Palmer RG, Weeks JD (1973) J Chem Phys 10:4171

    Google Scholar 

  23. Hayter JB, Penfold J (1981) Molec Physics 42:109

    Google Scholar 

  24. Hansen JP, Hayter JB (1982) Molec Phys 46:651

    Google Scholar 

  25. Fournet G (1951) Acta Cryst 4:293

    Google Scholar 

  26. Zernicke F, Prins JA (1927) Z Physik 41:184

    Google Scholar 

  27. Paalman HH, Pings CJ (1962) J Appl Phys 33:2635

    Google Scholar 

  28. Müller JJ, Zalkova TN, Damaschun G, Misselwitz R, Serdyuk IN, Welfle H (1986) Studia biophysica 112:151

    Google Scholar 

  29. Lukowski G, Müller RH, Müller BW, Dittgen M (1992) Europ J Pharm and Biopharm 38(1):41

    Google Scholar 

  30. Stokes AR (1948) Proc Phys Soc London 61:38

    Google Scholar 

  31. Damaschun G, Pürschel HV (1969) Monatshefte Chemie 100:510

    Google Scholar 

  32. Damaschun G, Müller JJ, Pürschel HV, Sommer G (1969) Monatshefte Chemie 100:1701

    Google Scholar 

  33. Schmidt PW (1991) J Appl Cryst 24:414

    Google Scholar 

  34. Pfeifer P (1984) Appl Surf Sci 18:146

    Google Scholar 

  35. Müller JJ, Damaschun G, Schmidt PW (1985) J Appl Cryst 18:241

    Google Scholar 

  36. Damaschun G, Damaschun H, Dembo AT, Kayushina RL, Kröber R, Moshkov KA, Müller JJ, Neifakh SA, Rolbin JA, Shavlovsky MM, Zirwer D (1978) Studia biophysica 71:53

    Google Scholar 

  37. Cheng CM, Micale FJ, Vanderhoff JW, El-Asser MS (1992) J Colloid Interface Sci 150:549

    Google Scholar 

  38. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  39. Ise N (1986) Angew. Chemie 98: 323

    Google Scholar 

  40. Dittgen M, Zosel B, Kunze H (1988) Pharmazie 43:872

    Google Scholar 

  41. Lukowski G, Müller RH, Müller BW, Dittgen M (1993) Colloid Polym Sci 271:100

    Google Scholar 

  42. Pfeifer P (1987) In: Laszko P (ed) Preparative Chemistry Academic Press, New York, p 13

    Google Scholar 

  43. Tamai H, Murakami T, Suzawa T (1985) J Appl Polym Sci 30:3857

    Google Scholar 

  44. Shirahama H, Suzawa T (1985) Colloid Polym Sci 263:141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, J.J., Lukowski, G., Kröber, R. et al. Acrylic acid copolymer nanoparticles for drug delivery: structural characterization of nanoparticles by small-angle x-ray scattering. Colloid Polym Sci 272, 755–769 (1994). https://doi.org/10.1007/BF00652416

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00652416

Key words

Navigation