ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular engineering 6 (1996), S. 307-317 
    ISSN: 1572-8951
    Keywords: H2 receptor ; H2 antagonist ; histamine ; molecular model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The interactions between the H2 antagonists cimetidine, ranitidine and famotidine with a basic molecular model for the histamine H2 receptor have been analyzed. The calculated potential energies of the antagonist-H2 receptor complexes follow an order consistent with the published binding data, indicating that famotidine is the best H2 receptor ligand. Comparison with the interactions found for histamine and this H2 receptor model suggests that the protonated imiddazole moiety of cimetidine, the dimethylammonio moiety of protonated ranitidine and the protonated guanidinyl moiety of famotidine are bioisosteric with the protonated aliphatic amine group of histamine. Asp 98 in helix 3 appears to be the main residue for antagonist recognition, but some residues in helix 5 may be involved, apparently by serving to guide the antagonist into the binding pocket.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular engineering 6 (1996), S. 297-306 
    ISSN: 1572-8951
    Keywords: H2 receptor ; histamine ; molecular model ; mutation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A 3D model of the canine H2 receptor was built and analysed. This model was constructed using primary sequence comparisons and three-dimensional homology building with bacteriorhodopsin serving as a template. The energy analysis of the interaction between the N3H+ form and the N1H+ form of histamine with the receptor shows that both have the same binding affinity for the H2 receptor, but only the N3H+ form provokes structural changes. The calculated potential energies are consistent with the published binding data and suggest that Asp 98 is the principal residue for ligand recognition. On the basis of sequence alignment studies we postulate that Glu 270 in helix 7 may be important for activation of the H2 receptor. Docking studies of the N3H+ folded conformation in our model show that an intramolecular hydrogen bond between N3 and the amino group of the histamine molecule is broken, and the histamine then adopts a conformation similar to the N3H+ extended form to interact optimally with the H2 receptor. Mutations were made in the H2 receptor model to mimic published experimental point mutations. The interactions of the mutated receptor models with histamine are consistent with the experimental data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB1005, doi:10.1029/2008GB003349.
    Description: We synthesize estimates of the contemporary net air-sea CO2 flux on the basis of an inversion of interior ocean carbon observations using a suite of 10 ocean general circulation models (Mikaloff Fletcher et al., 2006, 2007) and compare them to estimates based on a new climatology of the air-sea difference of the partial pressure of CO2 (pCO2) (Takahashi et al., 2008). These two independent flux estimates reveal a consistent description of the regional distribution of annual mean sources and sinks of atmospheric CO2 for the decade of the 1990s and the early 2000s with differences at the regional level of generally less than 0.1 Pg C a−1. This distribution is characterized by outgassing in the tropics, uptake in midlatitudes, and comparatively small fluxes in thehigh latitudes. Both estimates point toward a small (∼ −0.3 Pg C a−1) contemporary CO2 sink in the Southern Ocean (south of 44°S), a result of the near cancellation between a substantial outgassing of natural CO2 and a strong uptake of anthropogenic CO2. A notable exception in the generally good agreement between the two estimates exists within the Southern Ocean: the ocean inversion suggests a relatively uniform uptake, while the pCO2-based estimate suggests strong uptake in the region between 58°S and 44°S, and a source in the region south of 58°S. Globally and for a nominal period between 1995 and 2000, the contemporary net air-sea flux of CO2 is estimated to be −1.7 ± 0.4 Pg C a−1 (inversion) and −1.4 ± 0.7 Pg C a−1 (pCO2-climatology), respectively, consisting of an outgassing flux of river-derived carbon of ∼+0.5 Pg C a−1, and an uptake flux of anthropogenic carbon of −2.2 ± 0.3 Pg C a−1 (inversion) and −1.9 ± 0.7 Pg C a−1 (pCO2-climatology). The two flux estimates also imply a consistent description of the contemporary meridional transport of carbon with southward ocean transport throughout most of the Atlantic basin, and strong equatorward convergence in the Indo-Pacific basins. Both transport estimates suggest a small hemispheric asymmetry with a southward transport of between −0.2 and −0.3 Pg C a−1 across the equator. While the convergence of these two independent estimates is encouraging and suggests that it is now possible to provide relatively tight constraints for the net air-sea CO2 fluxes at the regional basis, both studies are limited by their lack of consideration of long-term changes in the ocean carbon cycle, such as the recent possible stalling in the expected growth of the Southern Ocean carbon sink.
    Description: Core financial support for this study came from the National Aeronautics and Space Administration under grant NAG5-12528 to NG and SMF, with additional support by the U.S. National Science Foundation. M. Gloor was supported by the EBI nd EEE institutes at the University of Leeds. M. Gerber, SM, FJ, and AM thank the European Commission for support through CarboOcean (511176-2) and the NOCES project (EVK2-CT-2001- 00134). TT has been supported by NOAA grant NAO30AR4320179P27.
    Keywords: Air-sea carbon flux ; Carbon flux ; Anthropogenic CO2
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...