ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • magnesium  (1)
  • 1990-1994  (1)
Collection
Publisher
Years
  • 1990-1994  (1)
Year
  • 1
    ISSN: 1572-8927
    Keywords: Phase equilibrium: solubility ; carbonates ; magnesium ; eitelite ; Pitzer model ; carbonic acid ; carbonato complex formation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The stoichiometric solubility constant of eitelite (NaMg 0.5 CO 3 +2H+ ⇄ Na++0.5Mg 2+ +CO 2 (g)+H 2 O, log*K pso I =14.67±0.03 was determined at I=3 m (mol kg−1) (NaClO 4 ) and 25°C. The stability of magnesium (hydrogen-)carbonato complexes in this ionic medium was explicitely taken into account. Consequently, trace activity coefficients of free ionic species, calculated from the Pitzer model with ion-interaction parameters from the literature, were sufficient for an evaluation of the thermodynamic solubility constants and Gibbs energies of formation for eitelite (−1039.88±0.60), magnesite (−1033.60±0.40), hydromagnesite (−1174.30±0.50), nesquehonite (−1724.67±0.40), and brucite (−835.90±0.80 kJ-mol −1 ). The increasing solubilities of nesquehonite and eitelite at higher sodium carbonate molalities were explained by invoking a magnesium dicarbonato complex (Mg2++2CO 3 2− ⇄ Mg(CO3) 2 2− , log βz = 3.90 ± 0.08). A set of ion-interaction parameters was obtained from solubility and dissociation constants for carbonic acid in 1 to 3.5 m NaClO 4 media $$(\theta _{HCO_3^ - ,ClO_4^ - } = 0.081, \theta _{CO_3^{2 - } ,ClO_4^ - } = 0.071, \psi _{{\rm N}a^ + , HCO_3^ - , ClO_4^ - } = - 0.019,\psi _{{\rm N}a^ + , CO_3^{2 - } , ClO_4^ - } = - 0.006,\lambda _{ClO_4^ - ,CO_2 } = - 0.076)$$ which reproduce these constants to 0.02 units in log K. The following Pitzer parameters are consistent with the previously studied formation of magnesium (hydrogen-)carbonato complexes in 3m NaClO 4 $$(\psi _{Mg^{2 + } , HCO_3^ - , ClO_4^ - } = - 0.36, \lambda _{ClO_4^ - ,MgCO_3 } = 0.081)$$ . The model and Gibbs functions of solid phases derived here reproduce original solubility data (−log [H+], [Mg 2+ ] tot ) measured in perchlorate medium within experimental uncertainty.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...