Skip to main content
Log in

Solid-solute phase equilibria in aqueous solution. VI. Solubilities, complex formation, and ion-interaction parameters for the system Na+−Mg2+−ClO 4 −CO2−H2O at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The stoichiometric solubility constant of eitelite (NaMg 0.5 CO 3 +2H+ ⇄ Na++0.5Mg2++CO 2 (g)+H 2 O, log*K Ipso =14.67±0.03 was determined at I=3 m (mol kg−1) (NaClO 4 ) and 25°C. The stability of magnesium (hydrogen-)carbonato complexes in this ionic medium was explicitely taken into account. Consequently, trace activity coefficients of free ionic species, calculated from the Pitzer model with ion-interaction parameters from the literature, were sufficient for an evaluation of the thermodynamic solubility constants and Gibbs energies of formation for eitelite (−1039.88±0.60), magnesite (−1033.60±0.40), hydromagnesite (−1174.30±0.50), nesquehonite (−1724.67±0.40), and brucite (−835.90±0.80 kJ-mol−1). The increasing solubilities of nesquehonite and eitelite at higher sodium carbonate molalities were explained by invoking a magnesium dicarbonato complex (Mg2++2CO 2−3 ⇄ Mg(CO3) 2−2 , log βz = 3.90 ± 0.08). A set of ion-interaction parameters was obtained from solubility and dissociation constants for carbonic acid in 1 to 3.5 m NaClO 4 media \((\theta _{HCO_3^ - ,ClO_4^ - } = 0.081, \theta _{CO_3^{2 - } ,ClO_4^ - } = 0.071, \psi _{{\rm N}a^ + , HCO_3^ - , ClO_4^ - } = - 0.019,\psi _{{\rm N}a^ + , CO_3^{2 - } , ClO_4^ - } = - 0.006,\lambda _{ClO_4^ - ,CO_2 } = - 0.076)\) which reproduce these constants to 0.02 units in log K. The following Pitzer parameters are consistent with the previously studied formation of magnesium (hydrogen-)carbonato complexes in 3m NaClO 4 \((\psi _{Mg^{2 + } , HCO_3^ - , ClO_4^ - } = - 0.36, \lambda _{ClO_4^ - ,MgCO_3 } = 0.081)\). The model and Gibbs functions of solid phases derived here reproduce original solubility data (−log [H+], [Mg2+] tot ) measured in perchlorate medium within experimental uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Königsberger, R. Hausner, and H. Gamsjäger,Geochim. Cosmochim. Acta 55, 3505 (1991).

    Article  Google Scholar 

  2. K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).

    Article  CAS  Google Scholar 

  3. C. E. Harvie, N. Møller, and J. H. Weare,Geochim. Cosmochim. Acta 48, 723 (1984).

    Article  CAS  Google Scholar 

  4. P. W. Schindler,Chimia 17, 313 (1963).

    CAS  Google Scholar 

  5. H. Gamsjäger, H. U. Stuber and P. W. Schindler,Helv. Chim. Acta 48, 723 (1965).

    Article  Google Scholar 

  6. E. Königsberger and H. Gamsjäger,Ber. Bunsenges. Phys. Chem. 91, 785 (1987).

    Google Scholar 

  7. E. Königsberger and H. Gamsjäger,Marine Chemistry 30, 317 (1990).

    Article  Google Scholar 

  8. J. C. Deelman,N. Jb. Miner. Mh. 10, 468 (1984).

    Google Scholar 

  9. W. F. Riesen,Thermodynamische Untersuchungen am Quaternären System Ca 2+ −Mg 2+−CO2−H2 O (PhD Thesis, Universität Bern, 1969).

  10. G. Horn,Radex-Rundschau 1969, 439 (1969).

    Google Scholar 

  11. G. Eriksson and K. Hack,Metall. Trans. B 21 B, 1013 (1990).

    Google Scholar 

  12. F. J. C. Rossotti and H. Rossotti,The Determination of Stability Constants (McGraw-Hill, New York, 1961).

    Google Scholar 

  13. G. Biedermann and L. G. Sillén,Arkiv Kemi 5, 425 (1953).

    CAS  Google Scholar 

  14. W. Kraft,Monatsh. Chem.,98, 1978 (1967).

    Article  CAS  Google Scholar 

  15. G. von Knorre,Z. Anorg. Allg. Chemie 34, 260 (1903).

    Google Scholar 

  16. A. Pabst,Amer. Mineral. 58, 211 (1982).

    Google Scholar 

  17. H. Gamsjäger and F. Reiterer,Environ. Int. 2, 419 (1979).

    Article  Google Scholar 

  18. W. F. Riesen, H. Gamsjäger and P. W. Schindler,Geochim. Cosmochim. Acta 41, 1193 (1977).

    Article  CAS  Google Scholar 

  19. G. Nilsson, T. Rengemo, and L. G. Sillén,Acta Chem. Scand. 12, 868 (1958).

    CAS  Google Scholar 

  20. M. Frydman, G. Nilsson, T. Rengemo, and L. G. Sillén,Acta Chem. Scand. 12, 878 (1958).

    Article  CAS  Google Scholar 

  21. F. J. Millero and V. Thurmond,J. Solution Chem. 12, 401 (1983).

    Article  CAS  Google Scholar 

  22. K. S. Pitzer, J. Olsen, J. M. Simonsen, R. N. Roy, J. J. Gibbons, and L. Rowe,J. Chem. Eng. Data 30, 14 (1985).

    Article  CAS  Google Scholar 

  23. E. J. Reardon and D. Langmuir,Am. J. Sci. 274, 599 (1974).

    Article  CAS  Google Scholar 

  24. R. M. Pytkowicz and J. E. Hawley,Limnol. Oceanogr 19, 223 (1974).

    Article  Google Scholar 

  25. P. J. Davies and R. Bubela,Chem. Geol. 12, 289 (1973).

    Article  CAS  Google Scholar 

  26. R. A. Robie, O. Hemingway, and J. R. Fisher,U. S. Geol. Survey Bull. 1452, (1978).

  27. W. D. Kline,J. Am. Chem. Soc. 51, 2093 (1929).

    Article  CAS  Google Scholar 

  28. R. Marc and A. Šimek,Z. Anorg. Chem. 82, 17 (1913).

    Article  CAS  Google Scholar 

  29. H. Gamsjäger,Thermodynamic Aspects of Dissolution Reactions in the System Mg 2+−Ca2+−CO2−H2 O. inMagnesite; Monograph Series on Mineral Deposits, Vol. 28, P. Möller, ed., (Gebrüder Bornträger, Berlin, 1989), pages 269–285.

    Google Scholar 

  30. J. A. Kittrick and F. J. Peryea,Soil Sci. Soc. Am. J. 50, 243 (1986).

    Article  CAS  Google Scholar 

  31. R. Jantsch and F. Zemek,Radex-Rundschau 1965, 110 (1965).

    Google Scholar 

  32. P. W. Schindler, M. Reinert, and H. Gamsjäger,Helv. Chim. Acta 52, 2327 (1969).

    Article  CAS  Google Scholar 

  33. W. F. Linke and A. SeidellSolubilities. Inorganic and Metal-Organic Compounds, Vol. 2 (American Chemical Society, Washington, 1965).

    Google Scholar 

  34. C. Milton and H. P. Eugster,Mineral Assemblages of the Green River Formation. In P. H. Abelson, ed.,Researches in Geochemistry, pages 118–150 (Wiley, New York, 1959).

    Google Scholar 

  35. K. S. Pitzer and G. Mayorga,J. Phys. Chem. 77, 2300 (1973).

    Article  CAS  Google Scholar 

  36. J. C. Peiper and K. S. Pitzer,J. Chem. Thermodynamics 14, 613 (1982).

    Article  CAS  Google Scholar 

  37. K. S. Pitzer and J. J. Kim,J. Am. Chem. Soc. 96, 5701 (1974).

    Article  CAS  Google Scholar 

  38. R. N. Roy, J. J. Gibbons, D. P. Bliss, Jr., R. G. Casebolt and B. K. Baker,J. Solution Chem. 9, 911 (1980).

    Article  CAS  Google Scholar 

  39. K. S. Pitzer,J. Solution Chem. 4, 249 (1975).

    Article  CAS  Google Scholar 

  40. C. Monnin and J. Schott,Geochim. Cosmochim. Acta. 48, 571 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Königsberger, E., Schmidt, P. & Gamsjäger, H. Solid-solute phase equilibria in aqueous solution. VI. Solubilities, complex formation, and ion-interaction parameters for the system Na+−Mg2+−ClO 4 −CO2−H2O at 25°C. J Solution Chem 21, 1195–1216 (1992). https://doi.org/10.1007/BF00667217

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00667217

Key Words

Navigation