ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: We describe the products of the hitherto poorly known 512 AD eruption at Vesuvius, Italy. The deposit records a complex sequence of eruptive events, and it has been subdivided into eight main units, composed of stratified scoria lapilli or thin subordinate ash-rich layers. All the units formed by deposition from tephra fallout, pyroclastic density currents of limited extent being restricted to the initial stages of the eruption (U2). The main part of the deposit (U3 and U5) is characterized by a striking grain size alternation of fine to coarse lapilli, similar to that often described for mid-intensity, explosive eruptions. The erupted products have a phonotephritic composition, with progressively less evolved composition from the base to the top of the stratigraphic sequence. Based on different dispersal, sedimentological and textural features of the products, we identify five phases related to different eruptive styles: opening phase (U1, U2), subplinian phase (U3 to U5), pulsatory phreatomagmatic phase (U6), violent strombolian phase (U7) and final ash-dominated phase (U8). A DRE volume of 0.025 km3 has been calculated for the total fallout deposit. Most of the magma was erupted during the subplinian phase; lithic dispersal data indicate peak column heights of between 10 and 15 km, which correspond to a mass discharge rate (MDR) of 5×106 kg s1. The lower intensity, violent strombolian phase coincided with the eruption of the least evolved magma; a peak column height of 69 km, corresponding to an MDR of 1×106 kg s1, is estimated from field data. Phreatomagmatic activity played a minor role in the eruption, only contributing to the ash-rich deposits of U1, U4, U6 and U8. The two most striking features of the 512 AD eruption are the recurrent shifting of the eruption style and the pulsatory nature of the subplinian phase. Basing on a large set of observational data, we propose a model to explain this complex dynamics, also observed in other eruptions of similar scale from Vesuvius and elsewhere. The inbalance between the rates of magma supply and magma eruption may have caused the frequent changes in the eruptive style. Conversely, the high frequency oscillations of magma discharge recorded by the deposits of the subplinian phase were possibly related to cyclic instabilities in the permeability of the low viscosity magma column, which modulated magma fragmentation and discharge.
    Description: Published
    Description: 789-810
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Subplinian ; Vesuvius ; Magma fragmentation ; Phreatomagmatism ; Eruption dynamics ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0819
    Keywords: Neapolitan Yellow Tuff ; lithofacies ; phreatomagmatic ; inverse-grading ; traction carpets ; hydraulic jumps ; depositional units
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract This study focuses on the upper part, Member B, of the Neapolitan Yellow Tuff (NYT). Detailed measurements of stratigraphic sections within the unlithified ‘pozzolana’ facies show that Member B is composed of at least six distinct depositional units which each record a complex fluctuation between different styles of deposition from pyroclastic density flows. Six lithofacies have been identified: (1) massive valleyponded facies, the product of non-turbulent flows; (2) inverse-graded facies formed by flows that were turbulent for the majority of transport but were deposited through a non-tubulent basal regime; (3) regressive sand-wave facies, the product of high-concentration, turbulent flows; (4) stratified facies, the product of deposition from turbulent, low-particle-concentration, flows; (5) particle aggregate and (6) vesicular ash lithofacies, both of which are considered to have formed by deposition from turbulent, low-concentration flows. Although the whole eruption may have been phreatomagmatic, facies 1–4 are interpreted to be the product of dry eruptive activity, whereas facies 5 and 6 are considered to be of wet phreatomagmatic eruptive phases. Small-scale horizontal variations between facies include inverse-graded lithofacies that pass laterally into regressive sand-wave structures and stratified deposits. This indicates rapid transition from non-turbulent to turbulent deposition within the same flow. Thin vesicular ash and particle aggregate layers pass laterally into massive valley-ponded vesicular lithofacies, suggesting contemporaneous wet pyroclastic surges and cohesive mud flows. Three common vertical facies relations were recognised. (1) Massive valley-ponded and inverse-graded facies are overlain by stratified facies, suggesting decreasing particle concentration with time during passage of a flow. (2) Repeated vertical gradation from massive up into stratified facies and back into massive beds, is indicative of flow fluctuating between non-turbulent and turbulent depositional conditions. (3) Vertical alternation between particle aggregates and vesicular facies is interpreted as the product of many flow pulses, each of which involved deposition of a single particle aggregate and vesicular ash layer. It is possible that the different facies record stages in a continuum of flow processes. The deposits formed are dependent on the presence, thickness and behaviour of a high-concentration, non-turbulent boundary layer at the base of the flow. The end members of this process are (a) flows that transported and deposited material from a non-turbulent flow regime and (b) flows that transported and deposited material from a turbulent flow regime.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...