ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 68 (1998), S. 169-178 
    ISSN: 1432-0681
    Keywords: Key words Shear flow ; thin film ; linear instability ; power-law fluid ; slow/rapid flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary We study the stability of thin films of fluids subject to gravity along inclined planes, obeying a power-law constitutive relation of the Ostwald-de Waele type. A first analysis, in which the inertia terms are ignored, shows such flow to be stable against small, linear perturbations; a second analysis, in which the inertia terms are included, proves that there are stable and unstable regimes that are separated by a critical Ostwald-de Waele number O. Numerical computations for selected values of O demonstrate the decay and growth rate behavior of some finite amplitude disturbances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 34 (1999), S. 3-15 
    ISSN: 1573-1634
    Keywords: ice-till mixture ; thermodynamicconsistentform gravityshearflow ; gravityshearflow ; interfaceinteraction ; numericalsolutions.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract The ice-till mixtures at the base of glaciers and ice sheets play a very important role in the movement of the glaciers and ice sheets. This mixture is modelled as an isothermal flow which is overlain by a layer of pure ice. In this model, ice is treated as usual as a very viscous fluid with a constant true density, while till, which is assumed to consist of sediment and bound (that is, moving with the sediment) interstitial water and/or ice, is also assumed in a first approximation to behave such as a fluid. For an isothermal flow below the melting point the water component can be neglected. Therefore, only the mass and momentum balances for till and ice are needed. To complete the model, no-slip and stress-free boundary conditions are assumed at the base and free-surface, respectively. The transition from the till-ice mixture layer to the overlying pure ice layer is idealized in the model as a moving interface representing in the simplest case the till material boundary, at which jump balance relations for till and ice apply. The mechanical interactions are considered in the mixture basel layer, as well as at the interface via the surface production. The interface mechanical interaction is supposed to be only a function of the volume fraction jump across the interface. In the context of the thin-layer approximation, numerical solutions of the lowest-order form of the model show a till distribution which is reminiscent to the ice-till layer in geophysical environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...