ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • cyclohexane  (5)
  • fluorocarbon  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 12 (1991), S. 245-264 
    ISSN: 1572-9567
    Keywords: alkanes ; cyclohexane ; density ; dodecane ; hexadecane ; mixtures ; octane ; Tait equation ; viscometer ; viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The viscosity and density of three binary mixtures of cyclohexane with n-octane, n-dodecane, and n-hexadecane have been measured at 298, 323, and 348 K at pressures up to 150 MPa or freezing pressures. The measurements of the viscosity were performed by a torsionally vibrating crystal viscometer on a relative basis using benzene and cyclohexane as reference materials. The density was measured using a high-pressure burette apparatus. The uncertainties of the measurements are estimated to be less than 2% for viscosity and 0.1% for density, respectively. The effects of temperature, pressure, density, and composition on the viscosity are discussed. Applicabilities of several empirical correlating equations to the viscosity data were examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 14 (1993), S. 67-77 
    ISSN: 1572-9567
    Keywords: benzene ; cyclohexane ; deuteriobenzene ; isotope effect ; molar volume ; viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Viscosities of binary mixtures of cyclohexane with protiobenzene, C6H6, or deuteriobenzene, C6D6, have been measured at 298 and 323 K and at pressures up to 50 MPa using a capillary viscometer. The viscosities of these mixtures obtained were represented by a empirical Tait-type equation within the experimental uncertainty of ±2%. The effect of the isotopic substitution on the viscosity has been discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 8 (1987), S. 415-424 
    ISSN: 1572-9567
    Keywords: benzene ; cyclohexane ; eutectic point ; high pressure ; solid-liquid phase equilibrium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Solid-liquid phase equilibria of the benzene + cyclohexane system have been investigated experimentally at temperatures from 278 to 323 K and pressures up to 500 MPa using a newly designed optical vessel. The uncertainties of the measurements of temperature, pressure, and composition are within ±0.1 K, ±0.5 MPa, and ±0.001 mole fraction, respectively. The solid-liquid equilibrium pressure at a constant composition increases almost linearly with increasin temperature. The eutectic point shifts to a higher temperature and to a benzenerich composition with increasing pressure. This trend is found to agree with the direction predicted by the van Laar equation. The solid-liquid coexistence curves can be expressed by the Wilson equation with a mean deviation of 0.007 and a maximum deviation of 0.029 in mole fraction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 2 (1981), S. 249-268 
    ISSN: 1572-9567
    Keywords: chorotrifluoromethane (R 13) ; chlorodifluoromethane (R 22) ; dichlorodifluoromethane (R 12) ; fluorocarbon ; pressure effect on thermal conductivity ; thermal conductivity ; trifluoromethane (R 23)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The thermal conductivity of four gaseous fluorocarbon refrigerants has been measured by a vertical coaxial cylinder apparatus on a relative basis. The fluorocarbon refrigerants used and the ranges of temperature and pressure covered are as follows: R 12 (Dichlorodifluoromethane CCl2F2): 298.15–393.15 K, 0.1–4.28 MPa R 13 (Chlorotrifluoromethane CClF3): 283.15–373.15 K, 0.1–6.96 MPa R 22 (Chlorodifluoromethane CHClF2): 298.15–393.15 K, 0.1–5.76 MPa R 23 (Trifluoromethane CHF3): 283.15–373.15 K, 0.1–6.96 MPa The apparatus was calibrated using Ar, N2, and CO2 as the standard gases. The uncertainty of the experimental data is estimated to be within 2%, except in the critical region. The behavior of the thermal conductivity for these fluorocarbons is quite similar; thermal conductivity increases with increasing pressure. The temperature coefficient of thermal conductivity at constant pressure, (∂λ/∂T) p , is positive at low pressures and becomes negative at high pressures. Therefore, the thermal conductivity isotherms of each refrigerant intersect each other in a specific range of pressure. A steep enhancement of thermal conductivity is observed near the critical point. The experimental results are statistically analyzed and the thermal conductivities are expressed as functions of temperature and pressure and of temperature and density.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 3 (1982), S. 101-116 
    ISSN: 1572-9567
    Keywords: aromatic hydrocarbons ; cyclohexane ; n-alkanes ; phenyl halides ; thermal conductivity ; toluene ; transient hot-wire method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract New experimental data on the thermal conductivity of 14 organic liquids at atmospheric pressure are presented in the temperature range from 25 to 100°C. The liquids measured are five n-alkanes (C6, C7, C8, C10, C12), cyclohexane, six aromatic hydrocarbons (benzene, ethylbenzene, o-, m-, p-xylenes, isopropylbenzene) and two phenyl halides (chloro-, bromobenzenes). The measurements were performed by a transient hot-wire method on a relative basis. The thermal conductivity of toluene, which was selected as a reference liquid, was determined on an absolute basis with another transient apparatus. The precision of the present experimental results is within ±1.2%. The uncertainty of the thermal conductivity values is estimated to be within ±2%; this includes the uncertainty of the values of toluene as the reference liquid. The experimental results for each liquid are represented satisfactorily by a linear equation in temperature. At a reduced temperature T/T c=0.5, thermal conductivity has a simple relation with the molar density for each homologous series of liquids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 9 (1988), S. 465-479 
    ISSN: 1572-9567
    Keywords: fluorocarbon ; halogenated ethane ; liquid ; high pressure ; refrigerant ; thermal conductivity ; transient hot-wire method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract New experimental data on the thermal conductivity of liquid halogenated ethanes, R112 (CCl2F-CCl2F), R113 (CCl2F-CClF2), R114 (CClF2-CClF2), R114B2 (CBrF2-CBrF2), and R123 (CHCl2-CF3), are presented in the temperature range from 283 to 348 K at pressures up to 200 MPa or the freezing pressures. The measurements were carried out by a transient hot-wire apparatus within an uncertainty of ±1.0%. The thermal conductivity data obtained have been analyzed by means of the corresponding-states principle and other empirical methods. It is found that the corresponding-states correlation λ=f(Tr, Pr) holds well for R112, R113, and R114. The thermal conductivity can also be correlated satisfactorily with temperature, pressure, and molar volume by a similar expression to the Tait equation and the dense hard-sphere model presented by Dymond.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 3 (1982), S. 289-305 
    ISSN: 1572-9567
    Keywords: aromatic hydrocarbons ; cyclohexane ; free volume expression ; hard-sphere theory ; high pressure ; n-alkanes ; torsionally vibrating crystal method ; viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract New experimental data on the viscosity of 12 organic liquids are presented at temperatures of 25, 30, 50, and 75°C and at pressures up to 110 MPa. The liquids measured are five n-alkanes (C6, C7, C8, C10, C12), cyclohexane, and six aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-, m-, p-xylenes). The measurements were performed using a torsionally vibrating crystal method on a relative basis with an uncertainty less than 2%. A linear relationship between fluidity and molar volume, which is predicted from the hard-sphere theory, fails at pressures above 50 MPa. The rough hard-sphere model proposed by Chandler provides a reasonable representation of the data for aromatic hydrocarbons, while for n-alkanes the agreement is not satisfactory because of an aspherical shape of molecules. The viscosity data can be correlated well with the molar volume by a free-volume expression and also can be represented as a function of pressure by a similar expression to the Tait equation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 7 (1986), S. 1023-1031 
    ISSN: 1572-9567
    Keywords: dimensional analysis ; fluorocarbon ; gas mixture ; generalized correlation ; principle of corresponding states ; refrigerant ; viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A new generalized correlation is presented for the low-pressure gaseous viscosity of fluorocarbon refrigerants. The following empirical equation is obtained based on the most reliable experimental data for 16 fluorocarbons: $$\eta \xi = \left( {0.5124T_r - 0.0517} \right)^{0.82} Z_c ^{ - 0.81}$$ where η is the viscosity in μPa·s and ξ is the viscosity parameter defined using the critical temperature T c in K, the critical pressure P c in MPa, and the molar mass M in g·mol−1 as follows: $$\xi = T_c ^{1/6} M^{ - 1/2} P_c ^{ - 2/3}$$ The applicable ranges are 0.6〈T r〈1.8 and 0.253〈Z c〈0.282. The availability of the correlating equation for both pure fluorocarbons and their mixtures has been investigated based on the experimental data of these authors and those in the literature. It is found that the present correlation is useful for the prediction of the viscosity of pure fluorocarbons and their binary mixtures at atmospheric pressure with mean deviations less than 1.6%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...