Skip to main content
Log in

Viscosity of twelve hydrocarbon liquids in the temperature range 298–348 K at pressures up to 110 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

New experimental data on the viscosity of 12 organic liquids are presented at temperatures of 25, 30, 50, and 75°C and at pressures up to 110 MPa. The liquids measured are five n-alkanes (C6, C7, C8, C10, C12), cyclohexane, and six aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-, m-, p-xylenes). The measurements were performed using a torsionally vibrating crystal method on a relative basis with an uncertainty less than 2%. A linear relationship between fluidity and molar volume, which is predicted from the hard-sphere theory, fails at pressures above 50 MPa. The rough hard-sphere model proposed by Chandler provides a reasonable representation of the data for aromatic hydrocarbons, while for n-alkanes the agreement is not satisfactory because of an aspherical shape of molecules. The viscosity data can be correlated well with the molar volume by a free-volume expression and also can be represented as a function of pressure by a similar expression to the Tait equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Welber and S. L. Quimby, Phys. Rev. 107:645 (1957).

    Google Scholar 

  2. B. Welber, Phys. Rev. 119:1816 (1960).

    Google Scholar 

  3. J. K. Appeldoorn, E. H. Okrent, and W. Philippoff, Proc. Am. Petrol. Inst. III 42:163 (1962).

    Google Scholar 

  4. R. G. Rein, Jr., T. T. Charng, C. M. Sliepcevich, and W. J. Ewbank, ASLE Trans. 18:123 (1975).

    Google Scholar 

  5. A. F. Collings and E. McLaughlin, Trans. Faraday Soc. 67:340 (1971).

    Google Scholar 

  6. B. A. Lowry, S. A. Rice, and P. Gray, J. Chem. Phys. 40:3673 (1964).

    Google Scholar 

  7. D. E. Diller, J. Chem. Phys. 42:2089 (1965).

    Google Scholar 

  8. W. Herreman, A. Lattenist, W. Grevendonk, and A. DeBock, Physica 52:489 (1971).

    Google Scholar 

  9. R. W. H. Webeler and G. Allen, Phys. Rev. A 5:1820 (1972).

    Google Scholar 

  10. W. M. Haynes, Physica 67:440 (1973).

    Google Scholar 

  11. M. P. Bertinat, D. S. Betts, D. F. Brewer, and G. J. Butterworth, J. Low Temp. Phys. 16:479 (1974).

    Google Scholar 

  12. H. J. Strumpf, A. F. Collings, C. J. Pings, J. Chem. Phys. 60:3109 (1974).

    Google Scholar 

  13. D. E. Diller and J. M. Saber, Physica 108A:143 (1981).

    Google Scholar 

  14. H. J. M. Hanley, R. D. McCarty, and W. M. Haynes, J. Phys. Chem. Ref. Data 3:979 (1974).

    Google Scholar 

  15. J. H. Dymond and K. J. Young, Int. J. Thermophys. 1:331 (1980).

    Google Scholar 

  16. Y. Tanaka, unpublished data (obtained by correlation).

  17. Selected Values in Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds, API Research Project 44 (1953).

  18. H. E. Eduljee, D. M. Newitt, and K. E. Weale, J. Chem. Soc. 3086 (1951).

  19. J. W. M. Boelhouwer, Physica 26:1021 (1960).

    Google Scholar 

  20. P. S. Snyder, M. S. Benson, H. S. Huang, and J. Winnick, J. Chem. Eng. Data 19:157 (1974).

    Google Scholar 

  21. H. Kashiwagi, T. Fukunaga, Y. Tanaka, H. Kubota, and T. Makita, Rev. Phys. Chem. Japan 49:70 (1979).

    Google Scholar 

  22. Unpublished data obtained in the authors' laboratory.

  23. A. M. Mamedov, T. S. Akhundov, and F. G. Abdullaev, Inzh.-fiz. Zh. 30:705 (1976).

    Google Scholar 

  24. J. D. Isdale, J. H. Dymond, and T. A. Brawn, High Temp.-High Press. 11:571 (1979).

    Google Scholar 

  25. S. O. Guseinov, Ya. M. Naziev, and A. K. Akhmedov, Izv. vyssh. ucheb. Zaved., Neft' i Gaz 16(2):65 (1973).

    Google Scholar 

  26. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 61:57 (1926).

    Google Scholar 

  27. J. H. Dymond, K. J. Young, and J. D. Isdale, Int. J. Thermophys. 1:345 (1980).

    Google Scholar 

  28. J. H. Dymond, J. Robertson, and J. D. Isdale, Int. J. Thermophys. 2:133 (1981).

    Google Scholar 

  29. J. H. Dymond, J. Robertson, and J. D. Isdale, Int. J. Thermophys. 2:223 (1981).

    Google Scholar 

  30. N. A. Agaev and I. F. Golubev, Dokl. Akad. Nauk. SSSR 151:597 (1963).

    Google Scholar 

  31. N. A. Agaev and I. F. Golubev, Gazov. Promst. 8(7):50 (1963).

    Google Scholar 

  32. E. Dickinson, J. Phys. Chem. 81:2108 (1977).

    Google Scholar 

  33. D. W. Braizier and G. R. Freeman, Can. J. Chem. 47:893 (1969).

    Google Scholar 

  34. A. Jobling and A. S. C. Lawrence, Proc. Roy. Soc. London 206A:257 (1951).

    Google Scholar 

  35. H. J. Parkhurst, Jr., and J. Jonas, J. Chem. Phys. 63:2705 (1975).

    Google Scholar 

  36. A. M. Mamedov, T. S. Akhundov, Sh. M. Ismail-Zade, and A. D. Tairov, Izv. vyssh. ucheb. Zaved., Neft' i Gaz 14(2):74 (1971).

    Google Scholar 

  37. T. S. Akhundov, Sh. M. Ismail-Zade, and A. D. Tairov, Izv. vyssh. ucheb. Zaved., Neft' i Gaz 13(2):79 (1970).

    Google Scholar 

  38. T. S. Akhundov, Izv. vyssh. ucheb. Zaved., Neft' i Gaz 16(10):46, 74 (1973).

    Google Scholar 

  39. J. H. Dymond, J. Chem. Phys. 60:969 (1974).

    Google Scholar 

  40. D. Chandler, J. Chem. Phys. 62:1358 (1975).

    Google Scholar 

  41. J. H. Dymond and T. A. Brawn, in Proc. 7th Symp. Thermophys. Properties (ASME, New York, 1977), p. 660.

    Google Scholar 

  42. J. Jonas, D. Hasha, and S. G. Huang, J. Chem. Phys. 71:3996 (1979).

    Google Scholar 

  43. J. Jonas, D. Hasha, and S. G. Huang, J. Phys. Chem. 84:109 (1980).

    Google Scholar 

  44. B. J. Alder, D. M. Gass, and T. E. Wainwright, J. Chem. Phys. 53:3813 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashiwagi, H., Makita, T. Viscosity of twelve hydrocarbon liquids in the temperature range 298–348 K at pressures up to 110 MPa. Int J Thermophys 3, 289–305 (1982). https://doi.org/10.1007/BF00502346

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502346

Key words

Navigation