ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 1 (1990), S. 1-21 
    ISSN: 1573-269X
    Keywords: bifurcation theory ; chaos ; parametric vibrations ; quadratic nonlinearity ; cubic nonlinearity ; fractal basin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The behavior of single-degree-of-freedom systems possessing quadratic and cubic nonlinearities subject to parametric excitation is investigated. Both fundamental and principal parametric resonances are considered. A global bifurcation diagram in the excitation amplitude and excitation frequency domain is presented showing different possible stable steady-state solutions (attractors). Fractal basin maps for fundamental and principal parametric resonances when three attractors coexist are presented in color. An enlargement of one region of the map for principal parametric resonance reveals a Cantor-like set of fractal boundaries. For some cases, both periodic and chaotic attractors coexist.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 1 (1990), S. 313-339 
    ISSN: 1573-269X
    Keywords: Power systems ; chaos ; bifurcations ; loss of synchronism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We investigate some of the instabilities in a single-machine quasi-infinite busbar system. The system's behavior is described by the so-called swing equation, which is a nonlinear second-order ordinary-differential equation with additive and multiplicative harmonic terms having the frequency Ω. When Ω≈ω0, where ω0 is the linear natural frequency of the machine, we use digital-computer simulations to exhibit some of the complicated responses of the machine, including period-doubling bifurcations, chaotic motions, and unbounded motions (loss of synchronism). To predict the onset of these complicated behaviors, we use the method of multiple scales to develop an approximate first-order closed-form expression for the period-one responses of the machine. Then, we use various techniques to determine the stability of the analytical solutions. The analytically predicted period-one solutions and conditions for its instability are in good agreement with the digital-computer results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 2 (1991), S. 77-117 
    ISSN: 1573-269X
    Keywords: Internal resonances ; bifurcations ; quasiperiodic motions ; chaos
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We present a collection of experimental results on the influence of modal interactions (i.e., internal or autoparametric resonances) on the nonlinear response of flexible metallic and composite structures subjected to a range of resonant excitations. The experimental results are provided in the form of frequency spectra, Poincaré sections, pseudo-phase planes, dimension calculations, and response curves. Experimental observations of transitions from periodic to chaotically modulated motions are also presented. We also discuss relevant analytical results. The current study is also relevant to other internally resonant structural systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 3 (1992), S. 385-410 
    ISSN: 1573-269X
    Keywords: Autoparametric resonance ; torus ; chaos ; Hopf bifurcation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract An investigation is presented of the response of a three-degree-of-freedom system with quadratic nonlinearities and the autoparametric resonances ω3≈2ω2 and ω2≈2ω1 to a harmonic excitation of the third mode, where the ω m are the linear natural frequencies of the system. The method of multiple scales is used to determine six first-order nonlinear ordinary differential equations that govern the time variation of the amplitudes and phases of the interacting modes. The fixed points of these equations are obtained and their stability is determined. For certain parameter values, the fixed points are found to lose stability due to Hopf bifurcations and consequently the system exhibits amplitude-and phase-modulated motions. Regions where the amplitudes and phases display periodic, quasiperiodic, and chaotic time variations and hence regions where the overall system motion is periodically, quasiperiodically, and chaotically modulated are determined. Using various numerical simulations, we investigated nonperiodic solutions of the modulation equations using the amplitudeF of the excitation as a control parameter. As the excitation amplitudeF is increased, the fixed points of the modulation equations exhibit an instability due to a Hopf bifurcation, leading to limit-cycle solutions of the modulation equations. AsF is increased further, the limit cycle undergoes a period-doubling bifurcation followed by a secondary Hopf bifurcation, resulting in either a two-period quasiperiodic or a phase-locked solution. AsF is increased further, there is a torus breakdown and the solution of the modulation equations becomes chaotic, resulting in a chaotically modulated motion of the system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 2 (1991), S. 53-72 
    ISSN: 1573-269X
    Keywords: Power systems ; loss of synchronism ; chaos ; bifurcations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The response of a single-machine quasi-infinite busbar system to the simultaneous occurrence of principal parametric resonance and subharmonic resonance of order one-half is investigated. By numerical simulations we show the existence of oscillatory solutions (limit cycles), period-doubling bifurcations, chaos, and unbounded motions (loss of synchronism). The method of multiple scales is used to derive a second-order analytical solution that predicts (a) the onset of period-doubling bifurcations, which is a precursor to chaos and unbounded motions (loss of synchronism), and (b) saddle-node bifurcations, which may be precursors to loss of synchronism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...