ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Carbon metabolism ; Chloroplasts ; Darkness ; Glycolytic pathway ; Oxidative pentose phosphate cycle ; Spinacia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The conversion of U-labelled [14C]glucose-6-phosphate into other products by a soluble fraction of lysed spinach chloroplasts has been studied. It was found that both an oxidative pentose phosphate cycle and a glycolytic reaction sequence occur in this fraction. The formation of bisphosphates and of triose phosphates was ATP-dependent and occurred mainly via a glycolytic reaction sequence including a phosphofructokinase step. The conversion, of glucose-6-phosphate via the oxidative pentose phosphate cycle stopped with the formation of pentose monophosphates. This was found not to be because of a lack in transaldolase (or transketolase) activity, but because of the high concentration ratios of hexose monophosphate/pentose monophosphate used in our experiments for simulating the conditions in whole chloroplasts in the dark. Some regulatory properties of both the oxidative pentose phosphate cycle and of the glycolytic pathway were studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 153 (1981), S. 416-422 
    ISSN: 1432-2048
    Keywords: Chloroplast ; Photosynthesis (under stress) ; Protoplast ; Spinacia ; Water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1. Photosynthesis of leaf slices, mesophyll protoplasts, and intact chloroplasts of spinach was inhibited in hypertonic sorbitol solutions. Sorbitol could be replaced by other nonpenetrating osmotica such as sucrose or glycinebetaine. As a penetrating solute, ethyleneglycol was also inhibitory, but osmolarities required for inhibition of photosynthesis were considerably higher than in the case of non-penetrating osmotica.-2. With leaf slices and protoplasts, 50% inhibition by sorbitol was usually observed at osmotic potentials between 25 and 40 bar. With isolated intact chloroplasts, the osmotic potentials producing 50% inhibition varied considerably. Depending on the growth conditions of the plant material, 50% inhibition occurred between 14 and 40 bar. The integrity of the chloroplast envelope as measured by the accessibility of the thylakoid system for ferricyanide was not affected by osmotic stress.-3. Quantum requirements for CO2 assimilation and reduction of 3-phosphoglycerate or nitrite by intact chloroplasts increased under osmotic stress. The increase was larger for CO2 reduction than for reduction of 3-phosphoglycerate or nitrite.-4. In intact chloroplasts, electron transport to methylviologen was not much affected by osmotic stress. Basal electron transport was not stimulated, suggesting absence of uncoupling.-5. The increase in ATP/ADP ratios on illumination of intact chloroplasts was slower at an osmotic potential of 36 bar than at 11 bar.-6. The results indicate that inhibition of photosynthesis is not caused by the sensitivity of a single photosynthetic reaction to increased osmotic potentials. Rather, several reactions are sensitive to water stress. Osmotic stress acts on the photosynthetic apparatus mainly at the level of dark reactions and ATP synthesis, and much less on primary photoreactions or electron transport, between water and the primary oxidant of photosystem I.-7. The different sensitivity of chloroplasts to penetrating and non-penetrating solutes and the observed variability of chloroplast sensitivity to stress suggests that the reduction in water potential is not directly responsible for damage to the photosynthetic apparatus during osmotic stress. Rather, the composition of the chloroplasts appears to be a decisive factor which determines sensitivity or resistance to osmotic stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Planta 167 (1986), S. 292-299 
    ISSN: 1432-2048
    Keywords: Carboxylation ; Chloroplast (artificial stroma) ; Photosynthesis and dehydration ; Spinacia (photosynthesis and dehydration) ; Water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When spinach leaf tissue was subjected to evaporative dehydration, photosynthetic capacity at very high (5%) CO2 concentration and saturating irradiance (300 W·m-2), decreased in parallel to the relative water content (RWC). A 50% inhibition was observed at 60–40% RWC. In order to examine whether the inhibition was caused by increased solute concentrations in chloroplasts or cytoplasm, an artificial stroma medium (ASM) was set up containing all major osmotically relevant solutes measured in isolated intact spinach chloroplasts. Subsequently, the response of enzyme activities to normal and to increased concentrations of ASM was examined. Inhibition of enzymes by a concerted increase of all solutes was well correlated to the in-vivo response of photosynthesis to dehydration (60% inhibition at double-strength ASM). Inhibitory solutes were mainly divalent inorganic anions, such as sulfate and phosphate. Inhibition of ribulose-1,5-bisphosphate carboxylase by these ions as studied in more detail. Inhibition of the enzyme by sulfate and phosphate was competitive with respect to ribulose-1,5-bisphosphate, but not with respect to CO2. The KI for sulfate was 2.1 mmol·l-1 and for phosphate 0.57 mmol·l-1. Sugars and amino acids at the concentrations found in spinach chloroplasts did not prevent inhibition of enzymes by anions. The results indicate that increased anion concentrations in cells and organelles are responsible for primary, quickly reversible effects of moderate dehydration on plant tissues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...