ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Triticum aestivum ; Genomic variability ; Mitochondrial DNA ; Somatic tissue culture ; Regeneration ability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Embryogenic and non-embryogenic long-term callus cultures of hexaploid wheat exhibit differences in the organization of their mitochondrial genome. Embryogenic and non-embryogenic fractions of callus cultures initiated from immature embryos of the wheat cultivar “Chinese Spring” have been isolated and subsequently subcultured. DNA-DNA hybridization experiments using labelled cloned wheat mitochondrial DNA fragments have shown that the mitochondrial DNA organization of embryogenic subcultures derived from embryogenic parts of “Chinese Spring” calli is closely related to that of the initial “Chinese Spring” calli, while non-embryogenic subcultures derived from non-embryogenic fragments of “Chinese Spring” calli exhibit a mitochondrial DNA organization similar to that found in non-embryogenic calli derived from cultivar “Aquila”. In addition, somatic tissue cultures initiated from three other non-embryogenic wheat cultivars (“Talent”, “Thésée” and “Capitole”) display mitochondrial DNA arrangements similar to those found in cultivar “Aquila”. These results strongly suggest that, in wheat callus cultures, a particular mitochondrial genome organization is correlated with the ability of cultured cells to regenerate whole plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Nuclear-cytoplasmic interactions ; Mitochondrial genome ; Chondriome variability ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Although the mitochondrial genomes of the Chinese Spring and Aquila varieties of wheat are normaly similar in organization, this is not so in tissue cultures initiated from their immature embryos where the mitochondrial genomes of both are rearranged and in different, characteristic, ways. However, the mitochondrial genomes of tissue cultures of reciprocal F1 crosses between these varieties were almost identical to one another, showing that nuclear genes control the rearrangement processes. These rearrangements are either due to the appearance of new structures or else result from changes in the relative amounts of subgenomic components. The severe reduction in the amount of certain molecular configurations in tissue cultures from reciprocal crosses is probably due to the presence of dominant information in the Aquila nuclear genome. Data obtained from tissue cultures initiated from F2 embryos of the cross Aquila x Chinese Spring suggest that at least two complementary genes are involved in this control. In contrast, the presence of new molecular arrangements appears to be under the control of a dominant allelic form of a Chinese Spring gene or genes. Thus, this study demonstrates that at least two sets of nuclear genes control the reorganization of the mitochondrial genome which occurs when tissue cultures are initiated from the immature embryos of wheat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Triticum aestivum ; Tissue culture ; Mitochondrial DNA ; Genomic variability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Wheat mitochondria) DNA has been isolated from callus cultures initiated from both immature embryos and the corresponding parental cultivar. A Sall restriction pattern study has shown that the organization of callus culture mitochondria) DNA underwent extensive change, characterized by either the disappearance or the decrease in the relative stoichiometry of several restriction bands. Hybridization of labelled mitochondrial fragments obtained from a recombinant cosmid library to Southern blots of callus and parental line restricted mitochondria) DNAs has shown that a fraction of the mitochondria) genome was lost in callus cultures. Data from a Sall + HindIII restriction map of a defined part of the wheat mitochondria) genome concerned with some of these variations strongly suggest that the observed variations correspond to the disappearance of at least one mitochondria) DNA subgenomic molecule in callus cultures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Reciprocal recombination ; Mitochondrial genome ; Chondriome variability ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mitochondrial genome of the selfed progeny of a plant regenerated from long-term somatic tissue culture displays specific structural rearrangements characterized by the appearance of novel restriction fragments. A mitochondrial DNA library was constructed from this selfed progeny in the SalI site of cosmid pHC79 and the novel fragments were subsequently studied. They were shown to arise from reciprocal recombination events involving DNA sequences present in the parental plant. The regions of recombination were sequenced and the nucleotide sequences were aligned with those of the presumptive parental fragments. We characterized an imperfect short repeated DNA sequence, 242 bp long, within which a 7-bb DNA repeat could act as a region of recombination. The use of PCR technology allowed us to show that these fragments were present in both parental plants and tissue cultures as low-abundance sequence arrangements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Wheat ; Somatic tissue culture ; Mitochondrial DNA ; Chondriome variability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have previously shown that the mitochondrial genome of long-term tissue cultures prepared from immature embryos of several varieties of cultivated wheat underwent variety-specific rearrangements resulting from either changes in the relative amounts of subgenomic components or from the appearance of novel genomic configurations. In the present work, both categories of rearrangements were studied in long-term tissue cultures initiated from other explants (shoot meristem, young leaf base, young root tip, immature inflorescence) of the same wheat variety (Chinese Spring) and were compared to those previously obtained with immature embryo cultures. Two main patterns of reorganization were found in a region of the mitochondrial genome known to be hypervariable in structure. In addition, some of the novel subgenomic configurations were obviously organ/tissue-specific whereas others were present in more than one type of organ. In several instances, the age of culture was found to determine the degree of mitochondrial DNA rearrangement. The data presented in this study strengthen the hypothesis of an association between a particular organization of the mitochondrial genome in tissue culture and its regeneration capacity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2242
    Keywords: Wheat ; Somatic tissue culture ; Regenerated plants ; Mitochondrial DNA ; Chondriome variability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have previously shown that tissue cultures derived from various explants of the wheat variety Chinese Spring exhibit organ/tissue-specific changes in the organization of their mitochondrial genome. The aim of this work was to study the influence of passage out of in-vitro culture, and subsequent plant regeneration, on the in vitro “induced” reorganization of this genome. In all cases but one, subgenomic configurations present in both the donor parent and the tissue culture were evident, in corresponding regenerated plants. The presence, in regenerated plants, of subgenomic configurations found in tissue culture but undetectable in the donor parent appeared to be both timeand organ/tissue-dependent. Moreover, when present, these novel organizations were not systematically found in all regenerated plants. Finally, novel subgenomic configurations were specifically detected after passage out of in-vitro culture. As these results were obtained from a single plant variety, they clearly confirm the extreme plasticity of mitochondrial genome structure in response to in-vitro culture.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2242
    Keywords: Wheat ; Somatic tissue culture ; Regeneration ; Reciprocal crosses ; Mitochondrial DNA variability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The transmission of a structurally-hypervariable fraction of the mitochondrial genome has been studied in 42 F1 progenies obtained from reciprocal crosses between self-pollinated alloplasmic wheat plants regenerated after long-term somatic embryogenesis. This fraction of the genome is maternally and stoichiometrically inherited. In contrast, some additional restriction fragments specific to regenerated plants display a more complex mode of sexual transmission: one of the additional fragments was stoichiometrically and systematically inherited whereas two others were detected only in certain F1 hybrids. Assuming that the detection, by Southern analysis, of such a fragment in regenerated plants is due to the amplification of a pre-existing substoichiometric molecule generated by the activation of a rare recombination event, our results suggest that the probability of detecting a novel fragment in the F1 hybrids could be determined by the length of the repeated sequence at which recombination occurs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2242
    Keywords: Triticum ; Allopolyploidy ; Mitochondrial DNA ; Somatic tissue culture ; Chondriome variability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Southern-blot hybridizations of total DNA to mitochondrial DNA (mtDNA) probes were used to investigate the extent of mtDNA variability in cultures derived from immature embryos of diploid (Triticum monococcum, genomic formula: AA, T. tauschii, genomic formula: DD), allotetraploid (T. durum cv “Creso”, genomic formula: AABB), and allohexaploid (T. aestivum, genomic formula: AABBDD) wheat species. Similar distinct changes in mtDNA organization were observed in in vitro cultures of the derived tetraploid and the hexaploid species with related genomes. The tetraploid and hexaploid species share the B genome and mtDNA variability in in vitro culture is known to be under nuclear control. These results suggest that a study of B genome diploids and other polyploid combinations would now shed light on whether or not mtDNA variability in tissue cultures is under B-genome control.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...