ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-8264
    Keywords: carboxylation efficiecy ; carotenoids ; chlorophyll ; growth analysis ; net photosynthetic rate ; photochemical efficiency ; ribulose 1,5-bisphosphate carboxylase/oxygenase ; stomatal conductance ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Wheat plants were grown from sowing to day 18 in 26-dm3 chambers at three different CO2 concentrations: 150 (-CO2), 350 (C, control), 800 (+CO2) μmol mol-1. Afterwards, plants of the three variants were grown at the same natural CO2 concentration. Plant characteristics were measured just before the transfer (0 days after CO2 treatment, DAT), and at 5 – 8 DAT on the 1st leaf, and at 12 – 22 DAT on the 4th leaf. Decreased or increased CO2 concentrations caused acclimations which persisted after transplantation to natural CO2 concentration. At 5 – 8 DAT, stomatal density, stomatal conductance (gs), CO2 saturated net photosynthetic rate (PNsat0), radiation saturated net photosynthetic rate (PNsat1), and carboxylation efficiency (τ) were higher in -CO2 plants and lower in +CO2 plants than in C plants. As compared with C plants, the photochemical efficiency (α) was lower in -CO2 and higher in -CO2 plants, however, chlorophyll (Chl) a, Chl b, Chl a–b and carotenoid contents were lower in both -CO2 and +CO2 plants. On the 4th leaf, which emerged on plant after finishing CO2 treatments, at 12 – 22 DAT, no differences in stomatal density and g, between treatments were observed. In -CO2 plants, pigment content and PNsat0 were higher, α was lower, and PNsat1 and τ were not different from C plants. In contrast, in +CO2 plants, pigment content, PNsat1 and τ were lower, and PNsat0 and α were unchanged. Leaf area, dry mass, and tiller development increased in +CO2 plants and decreased in -CO2 plants. In the interval between 8 and 22 DAT, lower net assimilation rate in +CO2 than in -CO2 plants was observed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...