biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 43:227-237, 2000 | DOI: 10.1023/A:1002752210237

Photosynthetic Traits in Wheat Grown under Decreased and Increased CO2 Concentration, and after Transfer to Natural CO2 concentration

P. Ulman1, J. Čatský2, J. Pospíšilová2
1 Department of Plant Physiology, Faculty of Science, Charles University, Prague 2, Czech Republic
2 Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic

Wheat plants were grown from sowing to day 18 in 26-dm3 chambers at three different CO2 concentrations: 150 (-CO2), 350 (C, control), 800 (+CO2) μmol mol-1. Afterwards, plants of the three variants were grown at the same natural CO2 concentration. Plant characteristics were measured just before the transfer (0 days after CO2 treatment, DAT), and at 5 - 8 DAT on the 1st leaf, and at 12 - 22 DAT on the 4th leaf. Decreased or increased CO2 concentrations caused acclimations which persisted after transplantation to natural CO2 concentration. At 5 - 8 DAT, stomatal density, stomatal conductance (gs), CO2 saturated net photosynthetic rate (PNsat0), radiation saturated net photosynthetic rate (PNsat1), and carboxylation efficiency (τ) were higher in -CO2 plants and lower in +CO2 plants than in C plants. As compared with C plants, the photochemical efficiency (α) was lower in -CO2 and higher in -CO2 plants, however, chlorophyll (Chl) a, Chl b, Chl a-b and carotenoid contents were lower in both -CO2 and +CO2 plants. On the 4th leaf, which emerged on plant after finishing CO2 treatments, at 12 - 22 DAT, no differences in stomatal density and g, between treatments were observed. In -CO2 plants, pigment content and PNsat0 were higher, α was lower, and PNsat1 and τ were not different from C plants. In contrast, in +CO2 plants, pigment content, PNsat1 and τ were lower, and PNsat0 and α were unchanged. Leaf area, dry mass, and tiller development increased in +CO2 plants and decreased in -CO2 plants. In the interval between 8 and 22 DAT, lower net assimilation rate in +CO2 than in -CO2 plants was observed.

Keywords: carboxylation efficiecy; carotenoids; chlorophyll; growth analysis; net photosynthetic rate; photochemical efficiency; ribulose 1,5-bisphosphate carboxylase, oxygenase; stomatal conductance; Triticum aestivum
Subjects: carbon dioxide, elevated, decreased, photosynthetic traits; carboxylation efficiency, CO2; carotenoids, CO2; chlorophyll, CO2; rowth analysis, CO2; net photosynthetic rate, CO2; photochemical efficiency, CO2 ; photosynthetic rate, CO2; ribulose 1,5-bisphosphate carboxylase/oxygenase, elevated and decreased CO2; stomatal conductance, CO2; Triticum aestivum; wheat, elevated and decreased CO2, photosynthesis

Published: August 1, 2000  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ulman, P., Čatský, J., & Pospíšilová, J. (2000). Photosynthetic Traits in Wheat Grown under Decreased and Increased CO2 Concentration, and after Transfer to Natural CO2 concentration. Biologia plantarum43(2), 227-237. doi: 10.1023/A:1002752210237
Download citation

References

  1. Allen, L.H.: Carbon dioxide increase: direct impacts on crop and indirect effects mediated through anticipated climatic changes.-In: Boote, K.J., Bennett, J.M., Sinclair, T.R., Paulsen, G.M. (ed.): Physiology and Determination of Crop Yield. Pp. 425-459. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison 1994. Go to original source...
  2. Allen, L.H., Bisbal, E.C., Boote, K.J., Jones, P.H.: Soybean dry matter allocation under subambient and superambient levels of carbon dioxide.-Agron. J. 83: 875-883, 1991. Go to original source...
  3. Anděl, J.: Matematická Statistika. [Mathematical Statistics.] 2nd Ed.-SNTL, Prague 1985. [In Czech.]
  4. Apel, P.: Herstellung CO2-haltiger Gasgemische für Photosynthesemessungen mit dem URAS.-Flora A 157: 330-333, 1966. Go to original source...
  5. Arnon, D.I.: Cooper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1-15, 1949. Go to original source...
  6. Baker, J.T., Allen, L.H., Boote, K.J., Jones, P., Jones, J.W.: Rice photosynthesis and evapotranspiration in subambient, ambient and superambient carbon dioxide concentrations.-Agron. J. 82: 834-840, 1990. Go to original source...
  7. Baker, J.T., Laugel, F., Boote, K.J., Allen, L.H.: Effects of daytime carbon dioxide concentration on dark respiration in rice.-Plant Cell Environ. 15: 231-239, 1992. Go to original source...
  8. Billings, W.D., Clebsch, E.E.C., Mooney, H.A.: Effect of low concentration of carbon dioxide on photosynthesis rates of two races of Oxyria.-Science 133: 1834, 1961. Go to original source...
  9. Bowes, G.: Facing the inevitable: plants and increasing atmospheric CO2.-Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 309-332, 1993. Go to original source...
  10. Bunce, J.A.: Responses of respiration to increasing atmospheric carbon dioxide concentrations.-Physiol. Plant 90: 427-430, 1994. Go to original source...
  11. Campbell, W.J., Allen, L.H., Bowes, G.: Response of soybean canopy photosynthesis to CO2 concentration, light and temperature.-J. exp. Bot. 41: 427-433, 1990. Go to original source...
  12. Čatský, J., Pospíšilová, J., Solárová, J., Synková, H., Wilhelmová, N.: Limitations on photosynthesis under environment-simulating culture in vitro.-Biol. Plant. 37: 35-48, 1995. Go to original source...
  13. Cowling, S.A., Sage, R.F.: Interactive effects of low atmospheric CO2 and elevated temperature on growth, photosynthesis and respiration in Phaseolus vulgaris.-Plant Cell Environ. 21: 427-435, 1998. Go to original source...
  14. Critten, D.L.: Optimization of CO2 concentration in greenhouses: A modelling analysis for the lettuce crop.-J. Agr. Eng. Res. 48: 261-271, 1991. Go to original source...
  15. Drake, B.G., Gonzalez-Meler, M.A., Long, S.P.: More efficient plants: a consequence of rising atmospheric CO2?-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 609-639, 1997. Go to original source...
  16. Estiarte, M., Peñuclas, J., Kimball, B.A., Idso, S.B., LaMorte, R.L., Pinter, P.J., Wall, G.W., Garcia, R.L.: Elevated CO2 effects on stomatal density of wheat and sour orange trees.-J. exp. Bot. 45: 1665-1668, 1994. Go to original source...
  17. Fujiwara, K., Kozai, T., Watanabe, I.: Fundamental studies on environments in plant tissue culture vessels. (3) Measurements of carbon dioxide gas concentration in closed vessels containing tissue cultured plantlets and estimates of net photosynthetic rates of the plantlets.-J. Agr. Meteorol. 43: 21-30, 1987. Go to original source...
  18. Ghildiyal, M.C., Sharma-Natu, P., Khan, F.A.: Photosynthetic acclimation to elevated CO2 in relation to saccharides content in wheat and mugbean leaves.-Int. J. exp. Bot. 36: 217-220, 1998.
  19. Gifford, R.M., Lambers, H., Morison, J.I.L.: Respiration of crop species under CO2 enrichment.-Physiol. Plant. 63: 351-356, 1985. Go to original source...
  20. Greiner de Mothes, M.A.: Effects of enhanced CO2 concentration on wheat photosynthesis and long-term stomatal behaviour.-Photosynthetica 32: 193-202, 1996.
  21. Hák, R., Nátr, L.: Simple inexpensive laboratory equipment for cultivation of plants under various CO2 concentrations.-Biol. Plant. 32: 205-210, 1990. Go to original source...
  22. Hewitt, E.J.: Sand and water culture methods used in the study of plant nutrition. 2nd Ed.-Commonwealth Agr. Bur., Farnham Royal 1966.
  23. Imai, K., Murata, Y.: Effect of carbon dioxide concentration on growth and dry matter production of crop plants IV. After-effect of carbon dioxide-treatment on the apparent photosynthesis, dark respiration and dry matter production.-Jap. J. Crop Sci. 47: 330-335, 1978a. Go to original source...
  24. Imai, K., Murata, Y.: Effect of carbon dioxide concentration on growth and dry matter production of crop plants V. Analysis of after-effect of carbon dioxide-treatment on apparent photosynthesis.-Jap. J. Crop Sci. 47: 587-595, 1978b. Go to original source...
  25. Janáček, J.: Fyziologické Metody Sledování Účinku Stresu u Rostlin. [Physiological Methods for Observation Stress Effects in Plants.]-Thesis. Faculty of Science, Charles University, Prague 1996. [In Czech.]
  26. Kitaya, Y., Shibuya, T., Kozai, T., Kubota, C.: Effect of light intensity and air velocity on air temperature, water vapor pressure, and CO2 concentration inside a plant canopy under an artificial lighting condition.-Life Support Biosphere Sci. 5: 199-203, 1998.
  27. Körner, C.: Response of alpine vegetation to global climate change.-Catena 22(Suppl.): 85-96, 1992.
  28. Körner, C., Diemer, M.: Evidence that plants from high altitudes retain their greater photosynthetic efficiency under elevated CO2.-Funct. Ecol. 8: 58-68, 1994. Go to original source...
  29. Kotvalt, V., Hák, R.: Method for mathematical estimation of CO2 response curve parametres based on closed system measurements.-Photosynthetica 21: 91-95, 1987.
  30. Kozai, T., Kubota, Ch., Jeong, B.R.: Environmental control for the large-scale production of plants through in vitro techniques.-Plant Cell Tissue Organ Culture 51: 49-56, 1997. Go to original source...
  31. Kubínová, L.: Recent stereological methods for measuring leaf anatomical characteristics: estimation of the number and sizes of stomata and mesophyl cells.-J. exp. Bot. 45: 119-127, 1994. Go to original source...
  32. Květ, J., Ondok, J.P., Nečas, J., Jarvis, P.G.: Methods of growth analysis.-In: Šesták, Z., Čatský, J., Jarvis, P.G.: Plant Photosynthetic Production. Manual of Methods. Pp. 343-391. Dr. W. Junk Publishers, The Hague 1971.
  33. Lichtenthaler, H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.-Methods Enzymol. 148: 350-382, 1987. Go to original source...
  34. Malone, S.R., Maycux, H.S., Johnson, H.B., Polley, H.W.: Stomatal density and aperture length in four plant species grown across a subambient CO2 gradient.-Amer. J. Bot. 80: 1413-1418, 1993. Go to original source...
  35. Marek, M.V., Kalina, J., Matoušková, M.: Response of photosynthetic carbon assimilation of Norway spruce exposed to long-term elevation of CO2 concentration.-Photosynthetica 31: 209-220, 1995.
  36. Marek, M.V., Šprtová, M., Kalina, J.: The photosynthetic irradiance-response of Norway spruce exposed to a long-term elevation of CO2 concentration.-Photosynthetica 33: 259-268, 1997. Go to original source...
  37. Masle, J., Farquhar, G.D., Gifford, R.M.: Growth and carbon economy of wheat seedlings as affected by soil resistance to penetration and ambient partial pressure of CO2.-Aust. J. Plant Physiol. 17: 465-487, 1990. Go to original source...
  38. Mayeux, H.S., Johnson, H.B., Polley, H.W., Malone, S.R.: Yield of wheat across a subambient carbon dioxide gradient.-Global Change Biol. 3: 269-278, 1997. Go to original source...
  39. Mortensen, L.M.: Review: CO2 enrichment in greenhouses. Crop responses.-Sci. Hort. 33: 1-25, 1987. Go to original source...
  40. Mott, K.A.: Sensing of atmospheric CO2 by plants.-Plant Cell Environ. 13: 731-737, 1990. Go to original source...
  41. Murray, D.R.: Carbon dioxide and plant response.-J. Wiley and Sons, New York-Chichester-Toronto-Brisbane-Singapore 1997.
  42. Nederhoff, E.M.: Effects of CO2 Concentration on Photosynthesis, Transpiration and Production of Greenhouse Fruit Vegetable Crops.-Thesis. Agricultural University, Wageningen 1994.
  43. Nguyen, Q.T., Kozai, T.: Environmental effects on the growth of plantlets in micropropagation.-Environ. Control Biol. 36: 59-75, 1998. Go to original source...
  44. Niu, G., Kozai, T.: Simulation of the growth of potato plantlets cultured photoautotrophically in vitro.-Trans. ASAE 40: 255-260, 1997. Go to original source...
  45. Patterson, D.T., Flint, E.P.: Interacting effect of CO2 and nutrient concentration.-Weed Sci. 30: 389-394, 1982. Go to original source...
  46. Pearson, M., Brooks, G.L.: The influence of elevated CO2 on growth and age-related changes in leaf gas exchange.-J. exp. Bot. 46: 1651-1659, 1995. Go to original source...
  47. Pirochtová, M., Marek, M.: [A method of mathematical evaluation of the photosynthetic activity of forest tree species.]-Lesnictví (Praha) 37: 399-408, 1991. [In Czech.]
  48. Polley, H.W., Johnson, H.B., Marino, B.D., Mayeux, H.S.: Increase in C3 plant watter-use efficiency and biomass over glacial to present CO2 concentrations.-Nature 361: 61-64, 1993a. Go to original source...
  49. Polley, H.W., Johnson, H.B., Mayeux, H.S.: Growth and gas exchange of oats (Avena sativa) and wild mustard (Brassica kaber) at subambient CO2 concentrations.-Int. J. Plant Sci. 153: 453-461, 1992. Go to original source...
  50. Polley, H.W., Johnson, H.B., Mayeux, H.S., Brown, D.A., White, J.W.C.: Leaf and plant water use efficiency of C4 species grown at glacial to elevated CO2 concentrations.-Int. J. Plant Sci. 157: 164-170, 1996. Go to original source...
  51. Polley, H.W., Johnson, H.B., Mayeux, H.S., Malone, S.R.: Physiology and growth of wheat across a subambient carbon dioxide gradient.-Ann. Bot. 71: 347-356, 1993b. Go to original source...
  52. Pospíšilová, J.: Effect of air humidity on the development of functional stomatal apparatus.-Biol. Plant. 38: 197-204, 1996. Go to original source...
  53. Pospíšilová, J., Čatský, J.: Development of water stress under increased atmospheric CO2 concentration.-Biol. Plant. 42: 1-24, 1999a. Go to original source...
  54. Pospíšilová, J., Čatský, J.: Effect of increased atmospheric CO2 concentration on water use efficiency of plants.-In: Pessarakli, M. (ed.): Handbook of Plant and Crop Stress. 2nd Ed. Pp. 1163-1184. Marcel Dekker, New York-Basel-Hong Kong 1999b. Go to original source...
  55. Reining, E.: Acclimation of C3 photosynthesis to elevated carbon dioxide: hypotheses and experimental evidence.-Photosynthetica 30: 519-525, 1994.
  56. Sage, R.F.: Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective.-Photosynth. Res. 39: 351-368, 1994. Go to original source...
  57. Sage, R.F., Reid, C.D.: Photosynthetic acclimation to subambient CO2 (20 Pa) in the C3 annual Phaseolus vulgaris L.-Photosynthetica 27: 605-617, 1992.
  58. Sage, R.F., Reid, C.D.: Photosynthetic response mechanisms to environmental change.-In: Wilkinson, R. E. (ed.): Plant-Environment Interactions. Pp. 413-499. Marcel Dekker, New York-Basel-Hong Kong 1994.
  59. Sage, R.F., Sharkey, T.D., Seemann, J.R.: Acclimation of photosynthesis to elevated CO2 in five C3 species.-Plant Physiol. 89: 590-596, 1989. Go to original source...
  60. Samarakoon, A.B., Müller, W.J., Gifford, R.M.: Transpiration and leaf area under elevated CO2: Effects of soil water status and genotype in wheat.-Aust. J. Plant Physiol. 22: 33-44, 1995. Go to original source...
  61. Šantrůček, J., Šantrůčková, H., Květoň, J., Šimková, M., Roháček, K.: The effect of elevated CO2 concentration on photosynthetic CO2 fixation, respiration and carbon economy of wheat plants.-Rost. Výroba (Praha) 40: 689-696, 1994.
  62. Šantrůček, J., Šiffel, P., Polišenská, M., Pešková, H.: Species-specific response of the photosynthetic apparatus of tobacco and potato to low CO2 concentrations.-Photosynthetica 25: 203-209, 1991.
  63. Šantrůčková, H., Šantrůček, J., Květon, J., Šimková, M., Elhottová, D., Roháček, K.: Carbon balance of winter wheat-root microbiota system under elevated CO2.-Photosynthetica 36: 341-354, 1999. Go to original source...
  64. Saralabai, V.C., Vivekanandan, M., Suresh Babu, R.: Plant response to high CO2 concentration in the atmosphere.-Photosynthetica 33: 7-37, 1997. Go to original source...
  65. Sharkey, T.D.: Feedback effects on photosynthesis induced by assay and growth at high carbon dioxide.-In: Boote, K.J., Bennett, J.M., Sinclair, T.R., Paulsen, G.M. (ed.): Physiology and Determination of Crop Yield. Pp. 461-466. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison 1994. Go to original source...
  66. Solárová, J., Pospíšilová, J.: Effect of carbon dioxide enrichment during in vitro cultivation and acclimation to ex vitro conditions.-Biol. Plant. 39: 23-30, 1997. Go to original source...
  67. Solárová, J., Pospíšilová, J., Čatský, J., Šantrůček, J.: Photosynthesis and growth of tobacco plantlets in dependence on carbon supply.-Photosynthetica 23: 629-637, 1989.
  68. Solárová, J., Součková, D., Ullmann, J., Pospíšilová, J.: [In vitro culture: Environmental conditions and plantlet growth as affected by vessel and stopper types.]-Zahradniclví 23: 51-58, 1996. [In Czech.]
  69. Thornley, J.H.M.: Mathematical Models in Plant Physiology.-Academic press, London-New York-San Francisco 1976.
  70. Tichá, I.: Optimization of photoautotrophic tobacco in vitro culture: effect of suncaps closure on plantlet growth.-Photosynthetica 32: 475-479, 1996.
  71. Tuba, Z., Szente, K., Koch, J.: Response of photosynthesis, stomatal conductance, water use efficiency and production to long-term elevated CO2 in winter wheat.-J. Plant Physiol. 144: 661-668, 1994. Go to original source...
  72. Urban, O., Šprtová, M., Marek, M.V.: The effects of enhanced UV-B radiation on the photosynthetic characteristics of Norway spruce [Picea abies (L.) Karst.]trees growing in field conditions.-J. Forest Sci. 45: 223-229, 1999.
  73. Visser, A.J., Tosserams, M., Groen, M.W., Kalis, G., Kwant, R., Magendans, G.W.H., Rozema, J.: The combined effect of CO2 concentration and enhanced UV-B radiation on faba bean. 3. Leaf optical properties, pigments, stomatal index and epidermal cell density.-Plant Ecol. 128: 208-222, 1997. Go to original source...
  74. Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution.-J. Plant Physiol. 144: 307-313, 1994. Go to original source...
  75. Woodward, F.I., Bazzaz, F.A.: The responses of stomatal density to CO2 partial pressure.-J. exp. Bot. 39: 1771-1781, 1988. Go to original source...
  76. Woodward, F.I., Kelly, C.K.: The influence of CO2 concentration on stomatal density.-New Phytol. 131: 311-327, 1995. Go to original source...
  77. Xu, D.Q., Shen, Y.-K.: Midday depression of photosynthesis.-In: Pessarakli, M. (ed.): Handbook of Photosynthesis. Pp. 451-459. Marcel Dekker, New York-Basel-Hong Kong 1997.