ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Radiocarbon  (3)
  • Trace elements  (3)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Marine Chemistry 170 (2015): 49-60, doi:10.1016/j.marchem.2015.01.006.
    Description: The natural radionuclides 231Pa and 230Th are incorporated into the marine sediment record by scavenging, or adsorption to various particle types, via chemical reactions that are not fully understood. Because these isotopes have potential value in tracing several oceanographic processes, we investigate the nature of scavenging using trans-Atlantic measurements of dissolved (〈0.45 μm) and particulate (0.8-51 μm) 231Pa and 230Th, together with major particle composition. We find widespread impact of intense scavenging by authigenic Fe/Mn (hydr)oxides, in the form of hydrothermal particles emanating from the Mid-Atlantic ridge and particles resuspended from reducing conditions near the seafloor off the coast of West Africa. Biogenic opal was not found to be a significant scavenging phase for either element in this sample set, essentially because of its low abundance and small dynamic range at the studied sites. Distribution coefficients in shallow (〈 200 m) depths are anomalously low which suggests either the unexpected result of a low scavenging intensity for organic matter or that, in water masses containing abundant organic-rich particles, a greater percentage of radionuclides exist in the colloidal or complexed phase. In addition to particle concentration, the oceanic distribution of particle types likely plays a significant role in the ultimate distribution of sedimentary 230Th and 231Pa.
    Description: Cruise management for GA03 was funded by the U. S. National Science Foundation to W. Jenkins (OCE-0926423), E. Boyle (OCE-0926204), and G. Cutter (OCE-0926092). Radionuclide studies were supported by NSF (OCE-0927064 to LDEO, OCE-0926860 to WHOI, OCE- 0927757 to URI, and OCE-0927754 to UMN). Additional support came from the European Research Council (278705) to LFR and the Ford Foundation Predoctoral Fellowship to SMV. Particle studies were supported by NSF OCE-0963026 to PJL.
    Keywords: GEOTRACES ; Suspended particulate matter ; Adsorption ; Radioactive tracers ; Trace elements
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chemical Geology 493 (2018): 210-223, doi:10.1016/j.chemgeo.2018.05.040.
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
    Description: We gratefully acknowledge financial support by the Scientific Committee on Oceanic Research (SCOR) through grants from the U.S. National Science Foundation, including grants OCE-0608600, OCE-0938349, OCE-1243377, and OCE-1546580. Financial support was also provided by the UK Natural Environment Research Council (NERC), the Ministry of Earth Science of India, the Centre National de Recherche Scientifique, l'Université Paul Sabatier de Toulouse, the Observatoire Midi-Pyrénées Toulouse, the Universitat Autònoma de Barcelona, the Kiel Excellence Cluster The Future Ocean, the Swedish Museum of Natural History, The University of Tokyo, The University of British Columbia, The Royal Netherlands Institute for Sea Research, the GEOMAR-Helmholtz Centre for Ocean Research Kiel, and the Alfred Wegener Institute.
    Keywords: GEOTRACES ; Trace elements ; Isotopes ; Electronic atlas ; IDP2017
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 23 (2008): PA2209, doi:10.1029/2007PA001527.
    Description: The 14C reservoir age of the surface ocean was determined for two Holocene periods (4908–4955 and 3008–3066 calendar (cal) B.P.) using U/Th-dated corals from Biscayne National Park, Florida, United States. We found that the average reservoir ages for these two time periods (294 ± 33 and 291 ± 27 years, respectively) were lower than the average value between A.D. 1600 and 1900 (390 ± 60 years) from corals. It appears that the surface ocean was closer to isotopic equilibrium with CO2 in the atmosphere during these two time periods than it was during recent times. Seasonal δ 18O measurements from the younger coral are similar to modern values, suggesting that mixing with open ocean waters was indeed occurring during this coral's lifetime. Likely explanations for the lower reservoir age include increased stratification of the surface ocean or increased Δ14C values of subsurface waters that mix into the surface. Our results imply that a more correct reservoir age correction for radiocarbon measurements of marine samples in this location from the time periods ∼3040 and ∼4930 cal years B.P. is ∼292 ± 30 years, less than the canonical value of 404 ± 20 years.
    Description: NSF Chemical Oceanography program provided monetary support under grants OCE-9711326, OCE-0137207, and OCE-0551940 (to ERMD).
    Keywords: Reservoir age ; Radiocarbon ; Corals
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 29 (2014): 1072–1093, doi:10.1002/2014PA002674.
    Description: The last deglaciation was characterized by a series of millennial-scale climate events that have been linked to deep ocean variability. While often implied in interpretations, few direct constraints exist on circulation changes at mid-depths. Here we provide new constraints on the variability of deglacial mid-depth circulation using combined radiocarbon and neodymium isotopes in 24 North Atlantic deep-sea corals. Their aragonite skeletons have been dated by uranium-series, providing absolute ages and the resolution to record centennial-scale changes, while transects spanning the lifetime of a single coral allow subcentennial tracer reconstruction. Our results reveal that rapid fluctuations of water mass sourcing and radiocarbon affected the mid-depth water column (1.7–2.5 km) on timescales of less than 100 years during the latter half of Heinrich Stadial 1. The neodymium isotopic variability (−14.5 to −11.0) ranges from the composition of the modern northern-sourced waters towards more radiogenic compositions, suggesting the presence of a greater southern-sourced component at some times. However, in detail, simple two-component mixing between well-ventilated northern-sourced and radiocarbon-depleted southern-sourced water masses cannot explain all our data. Instead, corals from ~15.0 ka and ~15.8 ka may record variability between southern-sourced intermediate waters and radiocarbon-depleted northern-sourced waters, unless there was a major shift in the neodymium isotopic composition of the northern end-member. In order to explain the rapid shift towards the most depleted radiocarbon values at ~15.4 ka, we suggest a different mixing scenario involving either radiocarbon-depleted deep water from the Greenland-Iceland-Norwegian Seas or a southern-sourced deep water mass. Since these mid-depth changes preceded the Bolling-Allerod warming and were apparently unaccompanied by changes in the deep Atlantic, they may indicate an important role for the intermediate ocean in the early deglacial climate evolution.
    Description: This study was supported by Natural Environment Research Council grant NE/F016751/1, Marie Curie International Reintegration grant IRG 230828, and Leverhulme Trust grant RPG-398 to TvdF, as well as a Phillip Leverhulme Prize, Marie Curie International Reintegration Grant, and European Research Council grant to L.F.R.
    Description: 2015-05-20
    Keywords: Heinrich stadial ; Deglaciation ; Atlantic meridional overturning circulation ; Neodymium isotopes ; Radiocarbon ; Deep sea corals
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Chemistry 177 (2015): 1-8, doi:10.1016/j.marchem.2015.04.005.
    Description: The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes.
    Description: We gratefully acknowledge financial support by the Scientific Committee on Oceanic Research (SCOR) through grants from the U.S. National Science Foundation, including grants OCE-0608600, OCE-0938349, and OCE-1243377. Financial support was also provided by the UK Natural Environment Research Council, the Ministry of Earth Science of India, the Centre National de Recherche Scientifique, l'Université Paul Sabatier de Toulouse, the Observatoire Midi-Pyrénées Toulouse, the Universitat Autònoma de Barcelona, the Kiel Excellence Cluster The Future Ocean, the Swedish Museum of Natural History, The University of Tokyo, The University of British Columbia, The Royal Netherlands Institute for Sea Research, the GEOMAR-Helmholtz Centre for Ocean Research Kiel, and the Alfred Wegener Institute.
    Keywords: GEOTRACES ; Trace elements ; Isotopes ; Electronic atlas
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA4212, doi:10.1029/2011PA002174.
    Description: Radiocarbon analyses of carbonate materials provide critical information for understanding the last glacial cycle, recent climate history and paleoceanography. Methods that reduce the time and cost of radiocarbon (14C) analysis are highly desirable for large sample sets and reconnaissance type studies. We have developed a method for rapid radiocarbon analysis of carbonates using a novel continuous-flow accelerator mass spectrometry (CFAMS) system. We analyzed a suite of deep-sea coral samples and compared the results with those obtained using a conventional AMS system. Measurement uncertainty is 〈0.02 Fm or 160 Ryr for a modern sample and the mean background was 37,800 Ryr. Radiocarbon values were repeatable and in good agreement with those from the conventional AMS system. Sample handling and preparation is relatively simple and the method offered a significant increase in speed and cost effectiveness. We applied the method to coral samples from the Eastern Pacific Ocean to obtain an age distribution and identify samples for further analysis. This paper is intended to update the paleoceanographic community on the status of this new method and demonstrate its feasibility as a choice for rapid and affordable radiocarbon analysis.
    Description: This work was performed under NSF Cooperative Agreement OCE‐0753487, and also NSF‐OPP awards 0636787 and 0944474.
    Keywords: 14C ; CFAMS ; Carbonate ; Coral ; Paleoceanography ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...