ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-1472
    Keywords: Unstable atmospheric boundary layer ; Entrainment zone ; Turbulent kinetic energy shear production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The thickness of the entrainment zone at the top of the marine atmosphericboundary layer (MABL) has been documented by an airborne lidar on twoconsecutive days during a cold-air outbreak episode over the Mediterranean.In addition to the lidar observations, in situ turbulent flux measurementsat three levels in the MABL were made by a second aircraft. The flights' tracksare broken down in segments 25–30 km long and the data are filtered for theparametrization of turbulent entrainment in the MABL at scales smaller thana few kilometres. The structural parameters of the entrainment zone aredetermined by lidar from the distributions of the instantaneous MABL topheight. The average values Ph0 and Ph2 of the cumulativeprobability distributions are used to define the bottom and top heights of the entrainment zone h0 and h2, respectively. The parameters h0 andh2 are calculated by reference to a linear vertical buoyancy flux profilein the framework of a first-order jump model. The model is constrained by bothlidar and in situ data to determine Ph0 and Ph2 and so h0and h2. In unstable conditions theaverage fraction Ph0 is estimated to be 6.0 ± 1%. It is shown to beslightly sensitive to the presence of cloud at small cloud fractions.The mean value of the ratio of the inversion level buoyancy flux to the surfacebuoyancy flux ARv is found to range from 0.15 to 0.30 depending on the shearin the MABL. The average value is 0.22 ± 0.05. Our resultsare in good agreement with previous analysis at comparable spatial scales.In purely convective conditions, the value of ARv given by theparametrizations fitted to our results is about 0.10–0.12, a value smallerthan the commonly accepted value of 0.2. When compared to previousparametrization results, our proportionality constant for the mechanicalproduction of turbulent kinetic energy is also found to be scaled down, ingood agreement with large-eddy simulation results. It is suggestedthat mesoscale organized motions in the MABL is the source of thisdifference.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 93 (1999), S. 269-286 
    ISSN: 1573-1472
    Keywords: Surface layer ; Roughness length ; Sonic anemometer ; Column modelling ; Urban area
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Atmospheric boundary layer (ABL) turbulent processes in the Paris area have been documented in the framework of the étude de la Couche Limite en Agglomération Parisienne (ECLAP). Under anticyclonic conditions, simulations are made with a ‘column’ modelling approach, based on the three-dimensional version of the non-hydrostatic mesoscale model MERCURE restricted to a small domain. This ‘column’ model uses existing state-of-the-art surface-layer parameterizations (the addition of the convective velocity scale to the mean wind speed in near free convection periods, the prescription of the effective dynamical roughness length as well as a differentiation between dynamical and thermal roughness lengths). To ensure the representativeness of the comparison between measurements and simulations, the dynamical and thermal effective roughness lengths characterizing the experimental site are prescribed explicitly in the model, using sonic anemometer measurements. We show that the parameterizations implemented in MERCURE for this study enable a good description, by the three-dimensional model, of the observed complex ABL dynamics. We also show that in the region of Paris, the synoptic scale and mesoscale dynamics can have a dramatic impact on the ABL dynamics and turbulent processes at the local scale. This study is a first attempt at improving our ability to predict meteorological factors affecting urban air quality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...