Skip to main content
Log in

LIDAR DETERMINATION OF THE ENTRAINMENT ZONE THICKNESS AT THE TOP OF THE UNSTABLE MARINE ATMOSPHERIC BOUNDARY LAYER

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The thickness of the entrainment zone at the top of the marine atmosphericboundary layer (MABL) has been documented by an airborne lidar on twoconsecutive days during a cold-air outbreak episode over the Mediterranean.In addition to the lidar observations, in situ turbulent flux measurementsat three levels in the MABL were made by a second aircraft. The flights' tracksare broken down in segments 25–30 km long and the data are filtered for theparametrization of turbulent entrainment in the MABL at scales smaller thana few kilometres. The structural parameters of the entrainment zone aredetermined by lidar from the distributions of the instantaneous MABL topheight. The average values Ph0 and Ph2 of the cumulativeprobability distributions are used to define the bottom and top heights of the entrainment zone h0 and h2, respectively. The parameters h0 andh2 are calculated by reference to a linear vertical buoyancy flux profilein the framework of a first-order jump model. The model is constrained by bothlidar and in situ data to determine Ph0 and Ph2 and so h0and h2. In unstable conditions theaverage fraction Ph0 is estimated to be 6.0 ± 1%. It is shown to beslightly sensitive to the presence of cloud at small cloud fractions.The mean value of the ratio of the inversion level buoyancy flux to the surfacebuoyancy flux ARv is found to range from 0.15 to 0.30 depending on the shearin the MABL. The average value is 0.22 ± 0.05. Our resultsare in good agreement with previous analysis at comparable spatial scales.In purely convective conditions, the value of ARv given by theparametrizations fitted to our results is about 0.10–0.12, a value smallerthan the commonly accepted value of 0.2. When compared to previousparametrization results, our proportionality constant for the mechanicalproduction of turbulent kinetic energy is also found to be scaled down, ingood agreement with large-eddy simulation results. It is suggestedthat mesoscale organized motions in the MABL is the source of thisdifference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, T. P.: 1977, 'A Model of the Effect of Aerosols on Urban Climates with Particular Applications to the Los Angeles Basin', J. Atmos. Sci. 34, 531–547.

    Google Scholar 

  • Arsenault, H. H. and Marmet, P.: 1977, 'Comparison of Techniques for Extracting Signals from a Strong Background', Rev. Sci. Istrum. 48, 512–516.

    Google Scholar 

  • Ball, F. K.: 1960, 'Control of Inversion Height by Surface Heating', Quart. J. Roy. Meteorol. Soc. 86, 483–494.

    Google Scholar 

  • Batchvarova, E. and Gryning, S.-E.: 1994, 'An Applied Model for the Height of the Daytime Mixed Layer and the Entrainment Zone', Boundary-Layer Meteorol. 71, 311–323.

    Google Scholar 

  • Benech, B., Attié, J. L., Blanchard, A., Bougeault, P., Cazaudarré, P., Druilhet, A., Durand, P., Koffi, E., Prudhomme, P. and Tannhauser, D.: 1994, 'Observation of Lee Waves above the Pyrénées (French Spanish PYREX experiment)', Technical Soaring 18, 7–12.

    Google Scholar 

  • Betts, A. K., Desjardins, R. L., and MacPherson, J. I.: 1992, 'Budget Analysis of the Boundary Layer Grid during FIFE 1987', J. Geophys. Res. 97, 533–546.

    Google Scholar 

  • Betts, A. K. and Ball, H.: 1994, 'Budget Analysis of FIFE 1987 Sonde Data', J. Geophys. Res. 99, 3655–3666.

    Google Scholar 

  • Bock, F. V.: 1986, 'A Non-Linear Filter to Remove Impulse Noise from Meterological Data', J. Atmos. Oceanic Tech. 3, 51–58.

    Google Scholar 

  • Boers, R., Eloranta, E.W., and Coulter, R. L.: 1984, 'Lidar Observations of Mixed Layer Dynamics: Tests of Parametrized EntrainmentModels of Mixed Layer Growth Rate',J. Clim. Appl.Meteorol. 23, 247–266.

    Google Scholar 

  • Boers, R. and Eloranta, E.W.: 1986, 'Lidar Measurements of the Atmospheric Entrainment Zone and Potential Temperature Jump across the Top of the Mixed Layer', Boundary-Layer Meteorol. 34, 357–375.

    Google Scholar 

  • Boers, R. and Melfi, S. H.: 1987, 'Cold-Air Outbreak during MASEX: Lidar Observations and Boundary Layer Model Test', Boundary-Layer Meteorol. 39, 41–51.

    Google Scholar 

  • Bougeault, P., J ansa Clar, A., Benech, B., Carissimo, B., Pelon, P., and Richard, E.: 1990, 'Momentum Budget over the Pyrénées: The PYREX Experiment', Bull. Amer. Meteorol. Soc. 71, 806–818.

    Google Scholar 

  • Bougeault, P., Jansa Clar,A., Beau, I., Benech, B., Benoit, R., Bessemoulin, P., Caccia, J. L., Campins, J., Carissimo, B., Champeaux, J. L., Crochet, M., Druilhet, A., Durand, P., Elkalfi, A., Flamant, P. H., Genoves, A., Georgelin, M., Hoinka, K. P., Klaus, V., Koffi, E., Krotoni, V., Mazaudier, C., Pelon, J., Petitdidier, M., Pointin, Y., Richard, E., Satumora, T., Stein, S., and Tannhauser, D.: 1993, 'The Atmospheric Momentum Budget over a Major Mountain Range: First Results of the PYREX Field Program', Ann. Geophys. 11, 395–418.

    Google Scholar 

  • Brown, R. A.: 1970, 'A Secondary Flow Model for the Planetary Boundary Layer', J. Atmos. Sci. 27, 742–757.

    Google Scholar 

  • Campins, J., Jansa Clar, A., Benech, B., Koffi, E., and Bessemoulin, P.: 1995, 'Pyrex Observation and Model Diagnosis of the Tramontane Wind', Meteorol. Atm. Phys. 56, 209–228.

    Google Scholar 

  • Chou, S. H., Atlas, D., and Yeh, E.-N.: 1986, 'Turbulence in the Convective Marine Atmospheric Boundary Layer', J. Atmos. Sci. 43, 547–564.

    Google Scholar 

  • Chou, S. H. and Zimmerman, J.: 1989, 'Bivariate Conditional Sampling of Buoyancy Flux During an Intense Cold-Air Outbreak', Boundary-Layer Meteorol. 46, 93–112.

    Google Scholar 

  • Clark, T. L., Hauf, T., and Kuettner, J. P.: 1986, 'Convectively Forced Internal GravityWaves: Results from Two-Dimensional Numerical Experiments', Quart. J. Roy. Meteorol. Soc. 112, 899–925.

    Google Scholar 

  • Crum, T. D., Stull, R. B., and Eloranta, E. W.: 1987, 'Coincident Lidar and Aircraft Observations of the Entrainment into Thermals and Mixed Layers', J. Clim. Appl. Meteorol. 26, 774–788.

    Google Scholar 

  • Deardorff, J. W.: 1979, 'Prediction of Convectively Mixed-Layer Entrainment for Realistic Capping Inversion Structure', J. Atmos Sci. 36, 424–436.

    Google Scholar 

  • Deardorff, J. W., Willis, G. E., and Stockton, B. H.: 1980, 'Laboratory Studies of the Entrainment Zone of a Convectively Mixed Layer', J. Fluid Mech. 100, 41–64.

    Google Scholar 

  • Driedonks, A. G. M.: 1982, 'Models and Observations of the Growth of the Atmospheric Boundary Layer', Boundary-Layer Meteorol. 23, 283–306.

    Google Scholar 

  • Dupont, E.: 1991, 'Etude Méthodologique et Expérimentale de la Couche Limite Atmosphérique par Télédétection Laser', Ph.D. Thesis, Service D'Aéronomie du CNRS, Paris, 220 pp.

    Google Scholar 

  • Dupont, E., Pelon, J., and Flamant, C.: 1994, 'Study of the Moist Convective Boundary Layer Structure by Backscatter Lidar', Boundary-Layer Meteorol. 69, 1–25.

    Google Scholar 

  • Flamant, C. and Pelon, J.: 1996, 'Boundary Layer Structure over the Mediterranean during a Tramontane Event', Quart. J. Roy. Meteorol. Soc. 122, 1741–1778.

    Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, 316 pp. Geernaert, G. L.: 1990, 'Bulk Parameterizations for the Wind Stress and Heat Fluxes', in Geernaert and Pland (eds.), SurfaceWaves and Fluxes,KluwerAcademic Publishers, Dordrecht, pp. 91–172.

    Google Scholar 

  • Georgelin, M., Richard, E., Petitdidier, M., and Druilhet, A.: 1994, 'Impact of Subgrid-Scale Orography Parametrization on the Simulation of Orographic Flows', Mon. Wea. Rev. 122, 1509–1522.

    Google Scholar 

  • Gryning, S.-E. and Batchvarova, E.: 1994, 'Parametrization of the Depth of the Entrainment Zone above the Daytime Mixed Layer', Quart. J. Roy. Meteorol. Soc. 120, 47–58.

    Google Scholar 

  • Hedde, T. and Durand, P.: 1994, 'Turbulence Intensities and Bulk Coefficients in the Surface Layer above the Sea', Boundary-Layer Meteorol. 71, 415–432.

    Google Scholar 

  • Hein, P. F. and Brown, R. A.: 1988, 'Observation of Longitudinal Roll Vortices during Artic Cold-Air Outbreaks over Open Water', Boundary-Layer Meteorol. 45, 177–199.

    Google Scholar 

  • Hooper, W. P.: 1982, 'The Diurnal Evolution of the Planetary Boundary Layer: Lidar Observations above a Flat Homogeous Surface', Master of Science, University of Wisconsin-Madison.

  • Kaimal, J. C., Wyngaard, J.C., Haugen, D. A., Cote, O.R., Izumi,Y., Caughey, S. G., and Readings, C. J.: 1976, 'Turbulent Structure in the Convective Boundary Layer', J. Atmos. Sci. 33, 2152–2169.

    Google Scholar 

  • Kunkel, K. E., Eloranta, E. W., and Shipley, S. T.: 1977, 'Lidar Observations of the Convective Boundary Layer', J. Appl. Meteorol. 16, 1306–1311.

    Google Scholar 

  • Kuttner, J. P., Hildebrand, P. A., and Clark, T. L.: 1987, 'Convection Waves: Observations of Gravity Wave Systems over Convective Boundary Layers', Quart. J. Roy. Meteorol. Soc. 113, 445–467.

    Google Scholar 

  • LeMone, M. A.: 1973, 'The Structure and Dynamics of the Horizontal Roll Vortices in the Planetary Boundary Layer', J. Atmos. Sci. 30, 1077–1091.

    Google Scholar 

  • Lenshow, D. H. and Stephens, P. L.: 1980,'The Role of Thermals in the Convective Boundary Layer', Boundary-Layer Meteorol. 19, 509–532.

    Google Scholar 

  • Moeng, C.-H. and Sullivan, P. P.: 1994, 'A Comparison of Shear-and Buoyancy-Driven Planetary Boundary Layer Flows', J. Atmos. Sci. 51, 999–1022.

    Google Scholar 

  • Melfi, S. H., Sphinhirne, J. D., Chou, S. H., and Palm, S. P.: 1985, 'Lidar Observations of the Vertically Organized Convection in the Planetary Boundary Layer over the Ocean', J. Climate Appl. Meteorol. 24, 806–821.

    Google Scholar 

  • Nelson, E., Stull, R., and Eloranta, E. W.: 1989, 'A Prognostic Relationship for Entrainment Zone Thickness', J. Appl. Meteorol. 28, 885–903.

  • Noonkster, V. R.: 1974, 'Convective Activity Observed by FM-CW Radar', TR 1919, Naval Electronics Laboratory Center, San Diego, 70 pp.

  • Pelon, J., Flamant, P. H., and Meissonnier, M.: 1990, 'The French Airborne Backscatter Lidar LEANDRE I: Conception and Operation', in V. E. Zuev (ed.), Proceedings of 15th ILRC, Tomsk, U.S.S.R., Institute of Atmospheric Optics Publication, p. 36.

    Google Scholar 

  • Robinson, S. K.: 1991, 'Coherent Motions in the Turbulent Boundary Layer', Ann. Rev. Fluid Mech. 23, 601–640.

    Google Scholar 

  • Stull, R. B.: 1976a, 'The Energetics of Entrainment across a Density Interface', J. Atmos. Sci. 33, 1260–1267.

  • Stull, R. B.: 1976b, 'Internal GravityWaves Generated by Penetrative Convection', J. Atmos. Sci. 33, 1279–1286.

  • Stull, R. B. and Eloranta, E. W.: 1984, 'Boundary Layer Experiment 1983', Bull. Amer. Meteorol. Soc. 65, 450–456.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Stull, R. B.: 1994, 'A Convective Transport Theory for Surface Fluxes', J. Atmos. Sci. 51, 3–22.

    Google Scholar 

  • Tennekes, H. and Driedonks, A. G. M.: 1981, 'Basic Entrainment Equations for the Atmospheric Boundary Layer', J. Atmos. Sci. 20, 515–531.

    Google Scholar 

  • Werner, C.: 1972, 'Lidar Measurements of the Atmospheric Aerosol as a Function of Relative Humidity', Opto. Electr. 4, 125–132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FLAMANT, C., PELON, J., FLAMANT, P.H. et al. LIDAR DETERMINATION OF THE ENTRAINMENT ZONE THICKNESS AT THE TOP OF THE UNSTABLE MARINE ATMOSPHERIC BOUNDARY LAYER. Boundary-Layer Meteorology 83, 247–284 (1997). https://doi.org/10.1023/A:1000258318944

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000258318944

Navigation