ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Monogamy  (2)
  • Spiders  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 80 (1989), S. 533-539 
    ISSN: 1432-1939
    Keywords: Population variation ; Behavioral genetics ; Foraging behavior ; Spiders
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Optimal foraging theory is based on the assumption that at least some aspects of foraging behavior are genetically determined (Pyke et al. 1977; Kamil and Sargent 1980; Pyke 1984). Nonetheless, very few studies have examined the role of genetics in foraging behavior. Here, we report on geographical differences in the foraging behavior of a spider (Agelenopsis aperta) and investigate whether these differences are genetically determined. Field studies were conducted on two different populations of A. aperta: one residing in a desert riparian habitat, and the other in a desert grassland habitat. Data from the spiders' natural encounters with prey demonstrated that grassland spiders exhibited a higher frequency of attack than riparian spiders towards 13 of 15 prey types, including crickets and ants. Grassland spiders also had shorter latencies to attack 12 of 15 prey types, including crickets and ants, than riparian spiders. Subsequently, we reared grassland and riparian spiders under controlled conditions in the laboratory and observed their interactions with prey to determine whether the populational differences we found in the field could be genetic. Again, grassland spiders showed a shorter latency to attack prey (crickets, ants) than riparian spiders. These latencies were not significantly affected by the hunger state or age of the spiders. Finally, we reared a second generation (F2) of grassland and riparian spiders in the laboratory and observed their interactions with prey to determine whether the populational differences in the previous generation were due to genetic effects or maternal effects. As before, grassland spiders exhibited a shorter latency to attack prey (crickets) than riparian spiders. We conclude that the foraging differences we observed between these two populations of A. aperta are genetically determined. These differences probably have resulted from either natural selection acting directly on attack frequency and the latency to attack prey, or natural selection acting on traits which are genetically correlated with these aspects of foraging behavior.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Behavioral ecology and sociobiology 36 (1995), S. 313-322 
    ISSN: 1432-0762
    Keywords: Spiders ; Mating system ; Sexual selection ; Monogamy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Field studies of the desert spider Agelenopsis aperta revealed a primarily monogamous mating system. However polygyny, polyandry and polygynandry were superimposed upon the primary system, with 9% of the marked males and 11% of the marked females in a field population mating more than once. In the laboratory males commonly mated multiply with fertile offspring resulting, while females were less likely than males to mate multiply. Monogamy under field conditions was enforced by two factors: (1) high travel costs to males, and (2) a significant decline in female receptivity after the first mating. Heavy males were more likely to be accepted by females both in the field, and in female choice experiments conducted in the laboratory. Finally, male weight determined the outcome of male-male agonistic interactions over females. One possible explanation for female choice in this system which lacks male parental investment is that females may be using male size as an indicator of future success of their offspring.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Behavioral ecology and sociobiology 36 (1995), S. 313-322 
    ISSN: 1432-0762
    Keywords: Key words Spiders ; Mating system ; Sexual selection ; Monogamy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Field studies of the desert spider Agelenopsis aperta revealed a primarily monogamous mating system. However polygyny, polyandry and polygynandry were superimposed upon the primary system, with 9% of the marked males and 11% of the marked females in a field population mating more than once. In the laboratory males commonly mated multiply with fertile offspring resulting, while females were less likely than males to mate multiply. Monogamy under field conditions was enforced by two factors: (1) high travel costs to males, and (2) a significant decline in female receptivity after the first mating. Heavy males were more likely to be accepted by females both in the field, and in female choice experiments conducted in the laboratory. Finally, male weight determined the outcome of male-male agonistic interactions over females. One possible explanation for female choice in this system which lacks male parental investment is that females may be using male size as an indicator of future success of their offspring.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...