ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: On February 4, 1999 the Mars Global Surveyor spacecraft became the second spacecraft to successfully aerobrake into a nearly circular orbit about another planet. This paper will highlight some of the similarities and differences between the aerobraking phases of this mission and the first mission to use aerobraking, the Magellan mission to Venus. Although the Mars Global Surveyor (MGS) spacecraft was designed for aerobraking and the Magellan spacecraft was not, aerobraking MGS was a much more challenging task than aerobraking Magellan, primarily because the spacecraft was damaged during the initial deployment of the solar panels. The MGS aerobraking phase had to be completely redesigned to minimize the bending moment acting on a broken yoke connecting one of the solar panels to the spacecraft. Even if the MGS spacecraft was undamaged, aerobraking at Mars was more challenging than aerobraking at Venus for several reasons. First, Mars is subject to dust storms, which can significantly change the temperature of the atmosphere due to increased solar heating in the low and middle altitudes (below 50 km), which in turn can significantly increase the density at the aerobraking altitudes (above 100 km). During the first part of the MGS aerobraking phase, a regional dust storm was observed to have a significant and very rapid effect on the entire atmosphere of Mars. Computer simulations of global dust storms on Mars indicate that even larger density increases are possible than those observed during the MGS aerobraking phases. For many aerobraking missions, the duration of the aerobraking phase must be kept as short as possible to minimize the total mission cost. For Mars missions, a short aerobraking phase means that there will be less margin to accommodate atmospheric variability, so the operations team must be ready to propulsively raise periapsis by tens of kilometers on very short notice. This issue was less of a concern on Venus, where the thick lower atmosphere and the slow planet rotation resulted in more predictable atmospheric densities from one orbit to the next.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-14
    Description: During component level thermal-vacuum deployment testing of eight rotary viscous dampers for the Tropical Rainfall Measuring Mission (TRMM) satellite, all the dampers failed to provide damping during a region of the deployment. Radiographic examination showed that air in the damping fluid caused the undamped motion when the dampers were operated in a vacuum environment. Improvements in the procedure used to fill the dampers with damping fluid, the installation of a Viton vacuum seal in the damper cover, and improved screening techniques eliminated the problem.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 32nd Aerospace Mechanisms Symposium; 115-124; NASA/CP-1998-207191
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: The Orbiter radiator system consists of eight individual 4.6 m x 3.2 m panels located with four on each payload bay door. Forward panels #1 and #2 are 2.3 cm thick while the aft panels #3 and #4 have a smaller overall thickness of 1.3 cm. The honeycomb radiator panels consist of 0.028 cm thick Aluminum 2024-T81 facesheets and Al5056-H39 cores. The face-sheets are topped with 0.005 in. (0.127 mm) silver-Teflon tape. The radiators are located on the inside of the shuttle payload bay doors, which are closed during ascent and reentry, limiting damage to the on-orbit portion of the mission. Post-flight inspections at the Kennedy Space Center (KSC) following the STS-115 mission revealed a large micrometeoroid/orbital debris (MMOD) impact near the hinge line on the #4 starboard payload bay door radiator panel. The features of this impact make it the largest ever recorded on an orbiter payload bay door radiator. The general location of the damage site and the adjacent radiator panels can be seen in Figure 2. Initial measurements of the defect indicated that the hole in the facesheet was 0.108 in. (2.74 mm) in diameter. Figure 3 shows an image of the front side damage. Subsequent observations revealed exit damage on the rear facesheet. Impact damage features on the rear facesheet included a 0.03 in. diameter hole (0.76 mm), a approx.0.05 in. tall bulge (approx.1.3 mm), and a larger approx.0.2 in. tall bulge (approx.5.1 mm) that exhibited a crack over 0.27 in. (6.8 mm) long. A large approx.1 in. (25 mm) diameter region of the honeycomb core was also damaged. Refer to Figure 4 for an image of the backside damage to the panel. No damage was found on thermal blankets or payload bay door structure under the radiator panel. Figure 5 shows the front facesheet with the thermal tape removed. Ultrasound examination indicated a maximum facesheet debond extent of approximately 1 in. (25 mm) from the entry hole. X-ray examinations revealed damage to an estimated 31 honeycomb cells with an extent of 0.85 in. x 1.1 in. (21.6 x 27.9 mm). Pieces of the radiator at and surrounding the impact site were recovered during the repair procedures at KSC. They included the thermal tape, front facesheet, honeycomb core, and rear facesheet. These articles were examined at JSC using a scanning electron microscope (SEM) with an energy dispersive x-ray spectrometer (EDS). Figure 6 shows SEM images of the entry hole in the facesheet. The asymmetric height of the lip may be attributed to projectile shape and impact angle. Numerous instances of a glass-fiber organic matrix composite were observed in the facesheet tape sample. The fibers were approximately 10 micrometers in diameter and variable lengths. EDS analysis indicated a composition of Mg, Ca, Al, Si, and O. Figures 7 and 8 present images of the fiber bundles, which were believed to be circuit board material based on similarity in fiber diameter, orientation, consistency, and composition. A test program was initiated in an attempt to simulate the observed damage to the radiator facesheet and honeycomb. Twelve test shots were performed using projectiles cut from a 1.6 mm thick fiberglass circuit board substrate panel. Results from test HITF07017, shown in figures 9 and 10, correlates with the observed impact features reasonably well. The test was performed at 4.14 km/sec with an impact angle of 45 degrees using a cylindrical projectile with a diameter and length of 1.25 mm. The fiberglass circuit board material had a density of 1.65 g/cu cm, giving a projectile mass of 2.53 mg. An analysis was performed using the Bumper code to estimate the probability of impact to the shuttle from a 1.25 mm diameter particle. Table 1 shows a 1.6% chance (impact odds = 1 in 62) of a 1.25 mm or larger MMOD impact on the radiators of the vehicle during a typical ISS mission. There is a 0.4% chance (impact odds = 1 in 260) that a 1.25 mm or larger MMOD particle would impact the RCC wing leading edge and nose cap during a typical miion. Figure 11 illustrates the vulnerable areas of the wing leading edge reinforced carbon-carbon (RCC), an area of the vehicle that is very sensitive to impact damage. The highlighted red, orange, yellow, and light green areas would be expected to experience critical damage if impacted by an OD particle such as the one that hit the RH4 radiator panel on STS-115.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Orbital Debris Quarterly News, Vol. 11, No. 3; 2-5
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-27
    Description: Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium: shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the defInition of the penetration criteria of the propellant and oxidizer tanks dome surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 11th Hypervelocity Impact Symposium; 11-15 Apr. 20120; Frieburg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Post flight inspections on the Space Shuttle Atlantis conducted after the STS-115 mission revealed a 0.11 inch (2.8 mm) hole in the outer facesheet of the starboard payload bay door radiator panel #4. This hole is the possible result of micrometeoroid/orbiting debris (MMOD) impact. The payload bay door radiators in this region are 0.5 inch (12.7 mm) thick aluminum honeycomb with 0.011 in (0.279 mm) thick aluminum facesheets topped with 0.005 in (0.127 mm) silver-Teflon tape. Inner facesheet damage included a 0.267 in (6.78 mm) long through crack with measurable deformation in the area of 0.2 in (5.1 mm). There was also a 0.031 in (0.787 mm) diameter hole in the rear facesheet. A large approximately 1 in (25 mm) diameter region of honeycomb was also destroyed. Since the radiators are located on the inside of the shuttle payload bay doors which are closed during ascent and reentry, the damage could only have occurred during the on-orbit portion of the mission. This paper will document the data collected from the impact site and will include results of the SEM/EDX analysis. Evidence will be presented that suggests a source of the impact as well as an analysis of the impact site features that indicate projectile directionality. Results of hypervelocity impact testing on representative samples in an attempt to simulate the impact event will be presented and discussed. Finally, the results of a study showing the regions of the orbiter vehicle that would be vulnerable to an equivalent projectile will be given.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Hypervelocity Impact Symposium; Sep 23, 2007 - Sep 27, 2007; Williamsburg, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: On September 8, 2004, the Genesis spacecraft returned to Earth after spending 29 months about the sun-Earth libration point collecting solar wind particles. Four hours prior to Earth arrival, the entry capsule containing the samples was released for entry and subsequent landing at the Utah Test and Training Range. This paper provides an overview of the entry, descent, and landing trajectory analysis that was performed during the Mission Operations Phase leading up to final approach to Earth. The operations effort accurately delivered the entry capsule to the desired landing site. The final landing location was 8.3 km from the target, and was well within the allowable landing area. Preliminary reconstruction analyses indicate that the actual entry trajectory was very close to the pre-entry prediction.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AAS-05-121 , 15th AAS/AIAA Space Flight Mechanics Conference; Jan 23, 2005 - Jan 27, 2005; Copper Mountain, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Power is a critical commodity for all engineering efforts and is especially challenging in the aerospace field. This paper will provide a broad brush overview of some of the immediate and important challenges to NASA missions in the field of aerospace power, for generation, energy conversion, distribution, and storage. NASA s newest vehicles which are currently in the design phase will have power systems that will be developed from current technology, but will have the challenges of being light-weight, energy-efficient, and space-qualified. Future lunar and Mars "outposts" will need high power generation units for life support and energy-intensive exploration efforts. An overview of the progress in concepts for power systems and the status of the required technologies are discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Energy Conversion Engineering Conference; Jun 25, 2007 - Jun 27, 2007; Saint Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar ar-rays meet their sunlit power demands and supply excess power to battery packs for power de-livery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are ex-posed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-38177 , Hypervelocity Impact Symposium; Apr 24, 2017 - Apr 28, 2017; Canterbury; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar arrays meet their sunlit power demands and supply excess power to battery packs for power delivery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are exposed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-39275 , Hypervelocity Impact Symposium; Apr 24, 2017 - Apr 28, 2017; Canterbury; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Global Precipitation Measurement (GPM) spacecraft was jointly developed by National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The spacecraft is in a circular 400 Km altitude, 65 degrees inclination nadir pointing orbit with a three year basic mission life. The solar array consists of two sun tracking wings with cable wraps. The panels are populated with triple junction cells of nominal 29.5% efficiency. One axis is canted by 52 degrees to provide power to the spacecraft at high beta angles. The power system is a Direct Energy Transfer (DET) system designed to support 1950 Watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s x 84p batteries operated in parallel as a single battery. The paper describes the power system design details, its performance to date and the lithium ion battery model that was developed for use in the energy balance analysis and is being used to predict the on-orbit health of the battery.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN34970 , European Space Power Conference (ESPC 2016); Oct 03, 2016 - Oct 07, 2016; Thessaloniki; Greece
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...