ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-09
    Description: Based on over 4 years of Van Allen Probes measurements, an empirical model of radiation belt electron equatorial pitch angle distribution (PAD) is constructed. The model, developed by fitting electron PADs with Legendre polynomials, provides the statistical PADs as a function of L-shell (L = 1-6), magnetic local time, electron energy (~30 keV to 5.2 MeV), and geomagnetic activity (represented by the Dst index) and is also the first empirical PAD model in the inner belt and slot region. For megaelectron volt electrons, model results show more significant day-night PAD asymmetry of electrons with higher energies and during disturbed times, which is caused by geomagnetic field configuration and flux radial gradient changes. Steeper PADs with higher fluxes around 90 pitch angle and lower fluxes at lower pitch angles for higher energy electrons and during active times are also present, which could be due to electromagnetic ion cyclotron wave scattering. For hundreds of kiloelectron volt electrons, cap PADs are generally present in the slot region during quiet times and their energy-dependent features are consistent with hiss wave scattering, while during active times, cap PADs are less significant especially at outer part of slot region, which could be due to the complex energizing and transport processes. The 90-minimum PADs are persistently present in the inner belt and appear in the slot region during active times, and minima at 90 pitch angle are more significant for electrons with higher energies, which could be a critical evidence in identifying the underlying physical processes responsible for the formation of 90-minimum PADs.
    Keywords: Space Radiation
    Type: GSFC-E-DAA-TN70856 , Journal of Geophysical Research: Space Physics; 123; 5; 3493-3511
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E greater than 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25% of IP shocks are associated with prompt energization, and 14% are associated with MeV electron depletion. Parameters that represent IP shock strength are found to correlate best with highest levels of energization, suggesting that shock strength may play a key role in the severity of the enhancements. However, not every shock results in an enhancement, indicating that magnetospheric preconditioning may be required.
    Keywords: Space Radiation
    Type: GSFC-E-DAA-TN43224 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 43; 24; 12317-12324
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 megaelectronvolts, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.
    Keywords: Space Radiation
    Type: GSFC-E-DAA-TN55942 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 123; 1; 685-697
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...