ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2004-12-03
    Beschreibung: The role of high-speed solar wind streams in driving relativistic electron acceleration within the earth's magnetosphere is discussed based on International Solar-Terrestrial Physics (ISTP) Observatory and related spacecraft observations. A 'recirculation' mechanism for electron acceleration and redistribution was invoked. Recently, an increase in the number of coronal mass ejections (CMEs) and related 'magnetic clouds' was seen at 1 AU. As these CME/cloud systems interact with the earth's magnetosphere, they are able to produce rapid enhancements in the magnetospheric electron population. The relativistic electron signatures observed by the POLAR, SAMPEX, and other spacecraft during recent magnetic cloud events, especially January 1997 and May 1997, were compared and contrasted. In these cases, there were large solar wind and IMF changes during the cloud passages and very rapid energetic electron acceleration was observed. The relative geoeffectiveness of these events is examined and 'space weather' predicatability is assessed.
    Schlagwort(e): Solar Physics
    Materialart: Proceedings of the 31st ESALB Symposium on Correlated Phenomena at the Sun, in the Heliosphere and in Geospace; 199-206; ESA-SP-415
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-13
    Beschreibung: In our previous paper we reported the results of modeling of 14 selected well -observed strong halo coronal mass ejection (CME) events using the WSA -ENLIL cone model combination. Cone model input parameters were obtained from white light coronagraph images of the CME events using the analytical method developed by Xie et al. This work verified that coronagraph input gives reasonably good results for the CME arrival time prediction. In contrast to Taktakishvili et al., where we started the analysis by looking for clear CME signatures in the data and then proceeded to model the interplanetary consequences at 1 AU, in the present paper we start by generating a list of observed geomagnetic storm events and then work our way back to remote solar observations and carry out the corresponding CME modeling. The approach used in this study is addressing space weather forecasting and operational needs. We analyzed 36 particularly strong geomagnetic storms, then tried to associate them with particular CMEs using SOHO/LASCO catalogue, and finally modeled these CMEs using WSA-ENLIL cone model. Recently, Pulkkinen et al. developed a novel method for automatic determination of cone model parameters. We employed both analytical and automatic methods to determine cone model input parameters. We examined the CME arrival times and magnitude of impact at 1 AU for both techniques. The results of the simulations are compared with the ACE satellite observations. This comparison demonstrated that WSA -ENLIL model combination with coronagraph input gives reasonably good results for the CME arrival times for this set of 'geoeffective" CME events as well.
    Schlagwort(e): Solar Physics
    Materialart: GSFC.JA.00373.2012 , Space Weather; 9
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-13
    Beschreibung: Characterization of the three-dimensional structure of solar transients using incomplete plane of sky data is a difficult problem whose solutions have potential for societal benefit in terms of space weather applications. In this paper transients are characterized in three dimensions by means of conic coronal mass ejection (CME) approximation. A novel method for the automatic determination of cone model parameters from observed halo CMEs is introduced. The method uses both standard image processing techniques to extract the CME mass from white-light coronagraph images and a novel inversion routine providing the final cone parameters. A bootstrap technique is used to provide model parameter distributions. When combined with heliospheric modeling, the cone model parameter distributions will provide direct means for ensemble predictions of transient propagation in the heliosphere. An initial validation of the automatic method is carried by comparison to manually determined cone model parameters. It is shown using 14 halo CME events that there is reasonable agreement, especially between the heliocentric locations of the cones derived with the two methods. It is argued that both the heliocentric locations and the opening half-angles of the automatically determined cones may be more realistic than those obtained from the manual analysis
    Schlagwort(e): Solar Physics
    Materialart: GSFC.JA.4530.2011 , Solar Physics; 261; 1; 115-126
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-13
    Beschreibung: A key goal for space weather studies is to define severe and extreme conditions that might plausibly afflict human technology. On 23 July 2012, solar active region 1520 (approx. 141 deg W heliographic longitude) gave rise to a powerful coronal mass ejection (CME) with an initial speed that was determined to be 2500+/-500 km/s. The eruption was directed away from Earth toward 125 deg W longitude. STEREO-A sensors detected the CME arrival only about 19 h later and made in situ measurements of the solar wind and interplanetary magnetic field. In this paper, we address the question of what would have happened if this powerful interplanetary event had been Earthward directed. Using a well-proven geomagnetic storm forecast model, we find that the 23-24 July event would certainly have produced a geomagnetic storm that was comparable to the largest events of the twentieth century (Dst approx. - 500 nT). Using plausible assumptions about seasonal and time-of-day orientation of the Earth's magnetic dipole, the most extreme modeled value of storm-time disturbance would have been Dst= - 1182 nT. This is considerably larger than estimates for the famous Carrington storm of 1859. This finding has far reaching implications because it demonstrates that extreme space weather conditions such as those during March of 1989 or September of 1859 can happen even during a modest solar activity cycle such as the one presently underway. We argue that this extreme event should immediately be employed by the space weather community to model severe space weather effects on technological systems such as the electric power grid.
    Schlagwort(e): Solar Physics
    Materialart: GSFC-E-DAA-TN23099 , SPACE WEATHER (ISSN 1539-4956) (e-ISSN 1542-7390); 11; 10; 585-591
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-13
    Beschreibung: The discovery of long-lived electrostatic coherent structures with large-amplitude electric fields (1 less than or equal to E less than or equal to 500 mV/m) by the Van Allen Probes has revealed alternative routes through which planetary radiation belts' acceleration can take place. Following previous reports showing that small phase-space holes, with q(phi)/T (exp c)(sub e) approximately minus 10 (exp -2) - 10 (exp -3), could result from electron interaction with large-amplitude whistlers, we demonstrate one possible mechanism through which holes can grow nonlinearly (i.e., Gamma alpha square root of phi) and subcritically as a result of momentum exchange between hot and cold electron populations. Our results provide an explanation for the common occurrence and fast growth of large-amplitude electron phase-space holes in the Earth's radiation belts.
    Schlagwort(e): Solar Physics
    Materialart: GSFC-E-DAA-TN51173 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 846; 1; 83
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-13
    Beschreibung: Magnetic activity in the Northern Hemisphere auroral region was examined during solar cycles 22 and 23 (1993- 2008). Substorms were identified from ground-based magnetic field measurements by an automated search engine. On average, 550 substorms were observed per year, which gives in total about 9000 substorms. The interannual, seasonal and solar cycle-to-cycle variations of the substorm number (R(sub ss)), substorm duration (T(sub ss)), and peak amplitude (A(sub ss)) were examined. The declining phases of both solar cycles 22 and 23 were more active than the other solar cycle phases due to the enhanced solar wind speed. The spring substorms during the declining solar cycle phase (absolute value of A(sub ss,decl)) - 500 nT) were 25% larger than the spring substorms during the ascending solar cycle years ((absolute value of A(sub ss,asc) = 400 nT). The following seasonal variation was found: the most intense substorms occurred during spring and fall, the largest substorm frequency in the Northern Hemisphere winter, and the longest-duration substorms in summer. Furthermore, we found a winter-summer asymmetry in the substorm number and duration. which is speculated to be due to the variations in the ionospheric conductivity. The solar cycle-Io-cycle variation was found in the yearly substorm number and peak amplitude. The decline from the peak substorm activity in 1994 and 2003 to the following minima took 3 years during solar cycle 22, while it took 6 years during solar cycle 23.
    Schlagwort(e): Solar Physics
    Materialart: GSFC.JA.01252.2012 , Journal of Geophysical Research: Space Physics; 116; A00134
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-13
    Beschreibung: One of the major types of solar eruption, coronal mass ejections (CMEs) not only impact space weather, but also can have significant societal consequences. CMEs cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles, potentially resulting in enhanced radiation levels both in ions and electrons. Human and technological assets in space can be endangered as a result. CMEs are also the major contributor to generating large amplitude Geomagnetically Induced Currents (GICs), which are a source of concern for power grid safety. Due to their space weather significance, forecasting the evolution and impacts of CMEs has become a much desired capability for space weather operations worldwide. Based on our operational experience at Space Weather Research Center at NASA Goddard Space Flight Center (http://swrc.gsfc.nasa.gov), we present here some of the insights gained about accurately predicting CME impacts, particularly in relation to space weather operations. These include: 1. The need to maximize information to get an accurate handle of three-dimensional (3-D) CME kinetic parameters and therefore improve CME forecast; 2. The potential use of CME simulation results for qualitative prediction of regions of space where solar energetic particles (SEPs) may be found; 3. The need to include all CMEs occurring within a ~24 h period for a better representation of the CME interactions; 4. Various other important parameters in forecasting CME evolution in interplanetary space, with special emphasis on the CME propagation direction. It is noted that a future direction for our CME forecasting is to employ the ensemble modeling approach.
    Schlagwort(e): Solar Physics
    Materialart: GSFC-E-DAA-TN23093 , Space Weather; 11; 10; 557-574
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-07-12
    Beschreibung: We investigate a coronal mass ejection (CME) propagating toward Earth on 29 March 2011. This event is specifically chosen for its predominately northward directed magnetic field, so that the influence from the momentum flux onto Earth can be isolated. We focus our study on understanding how a small Earth-directed segment propagates. Mass images are created from the white-light cameras onboard STEREO which are also converted into mass height-time maps (mass J-maps). The mass tracks on these J-maps correspond to the sheath region between the CME and its associated shockfront as detected by in situ measurements at L1. A time series of mass measurements from the STEREOCOR-2A instrument is made along the Earth propagation direction. Qualitatively, this mass time series shows a remarkable resemblance to the L1 in situ density series. The in situ measurements are used as inputs into a three-dimensional (3-D) magnetospheric space weather simulation from the Community Coordinated Modeling Center. These simulations display a sudden compression of the magnetosphere from the large momentum flux at the leading edge of the CME, and predictions are made for the time derivative of the magnetic field (dBdt) on the ground. The predicted dBdt values were then compared with the observations from specific equatorially located ground stations and showed notable similarity. This study of the momentum of a CME from the Sun down to its influence on magnetic ground stations on Earth is presented as a preliminary proof of concept, such that future attempts may try to use remote sensing to create density and velocity time series as inputs to magnetospheric simulations.
    Schlagwort(e): Solar Physics
    Materialart: GSFC-E-DAA-TN15117 , Space Weather; 11; 5; 245-261
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-08-14
    Beschreibung: The high-energy protons from solar energetic particle (SEP) events present a hazard to space systems: damage to science instruments/electronics/materials or to astronauts. A reliable estimate of the high-energy proton environment is critical to assure mission success. Important characteristics of an SEP event are fluence, peak flux, energy spectrum, time to reach the peak flux, time to reach peak dose, and properties of the cumulative dose profile after an event starts. All of these characteristics are important to understand in order to design space missions properly for both robotic and human missions. Because of the unpredictable and sporadic nature of SEP events, statistical models are often used to represent the SEP parameters described above. In a study by Jun et al. (2007), the statistics of event fluences, durations, and time intervals between events were investigated using the then available historical SEP dataset obtained from the instruments onboard the IMP-8 spacecraft. Since then, a more comprehensive SEP dataset based off of IMP-8 and GOES called Reference Data Set Version 2.0 (RDSv2.0) has become available covering the SEP events up to Year 2015 under a framework of the European Space Agency's (ESA's) Solar Energetic Particle Environment Modelling (SEPEM) project (Jiggens et al., 2018). The main objectives of this statistical study of SEP events are two-fold: First, the statistics of peak fluxes, event fluences, durations, and time intervals will be re-visited by using RDSv2.0; Second, the statistical analyses of flux and dose timing will be performed using the same dataset RDSv2.0. The results of this study will address the statistical properties of all key parameters for designing a spacecraft or a human mission where the SEP environment is an important consideration.
    Schlagwort(e): Solar Physics
    Materialart: JSC-E-DAA-TN59203 , SHINE Workshop; Jul 30, 2018 - Aug 03, 2018; Cocoa Beach, FL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-11-13
    Beschreibung: This study shows a quantitative assessment of the use of Extreme Ultraviolet (EUV) observations in the prediction of Solar Energetic Proton (SEP) events. The UMASEP scheme (Space Weather, 9, S07003, 2011; 13, 2015, 807-819) forecasts the occurrence and the intensity of the first hours of SEP events. in order to predict well-connected events, this scheme correlates Solar Soft X-rays (SXR) with differential proton fluxes of the GOES satellites. In this study, we explore the use of the EUV time history from GOES-EUVS and SDO-AIA instruments in the UMASEP scheme. This study presents the results of the prediction of the occurrence of well-connected 〉10 MeV SEP events, for the period from May 2010 to December 2017, in terms of Probability of Detection (POD), False Alarm Ratio (FAR), Crticial Success Index (CSI), and the average and median of the warning times. The UMASEP/EUV-based models were calibrated using GOES and SDO data from May 2010 to October 2014, and validated using out-of-sample SDO data from November 2014 to December 2017. The best results were obtained by those models that used EUV data in the range 50-340 angstroms. We conclude that the UMASEP/EUV-based models yield similar or better POD results, and similar or worse FAR results, than those of the current real-time UMSEP/SXR-based model. The reason for the higher POD of the UMASEP/EUV-based models in the range of 50-340 angstroms was due to the high percentage of successful predictions of well-connected SEP events associated with 〈C4 flares and behind-the-limb flares, which amounted to 25% of all the well-connected events during the period May 2010 to December 2017. By using all the available data (2010-2017), this study also concluded that the simultaneous use of SXRs and EUVs in 94 angstroms in the UMASEP-10 tool for predicting all 〉10 MeV SEP events, improves the overall performance, obtaining a POD of 92.9% (39/42) compared with 81% (34/42) of the current tool, and a slightly worse FAR of 31.6% (18/57) compared with 29.2% (14/58) of the current tool.
    Schlagwort(e): Solar Physics
    Materialart: GSFC-E-DAA-TN73767 , 6702019015P , Journal of Space Weather and Space Climate (e-ISSN 2115-7251); 9; A27
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...