ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-05-21
    Description: Bile acids regulate the transcription of genes that control cholesterol homeostasis through molecular mechanisms that are poorly understood. Physiological concentrations of free and conjugated chenodeoxycholic acid, lithocholic acid, and deoxycholic acid activated the farnesoid X receptor (FXR; NR1H4), an orphan nuclear receptor. As ligands, these bile acids and their conjugates modulated interaction of FXR with a peptide derived from steroid receptor coactivator 1. These results provide evidence for a nuclear bile acid signaling pathway that may regulate cholesterol homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parks, D J -- Blanchard, S G -- Bledsoe, R K -- Chandra, G -- Consler, T G -- Kliewer, S A -- Stimmel, J B -- Willson, T M -- Zavacki, A M -- Moore, D D -- Lehmann, J M -- F32 DK09793/DK/NIDDK NIH HHS/ -- R01 DK53366/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 May 21;284(5418):1365-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biochemistry, Glaxo Wellcome Research and Development, Research Triangle Park NC, 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334993" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/chemistry/*metabolism/pharmacology ; Carrier Proteins/metabolism ; Cell Line ; Chenodeoxycholic Acid/*metabolism/pharmacology ; Cholesterol/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Deoxycholic Acid/metabolism/pharmacology ; Histone Acetyltransferases ; Homeostasis ; Humans ; Ligands ; Lithocholic Acid/metabolism/pharmacology ; Mice ; Nuclear Receptor Coactivator 1 ; *Organic Anion Transporters, Sodium-Dependent ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Structure-Activity Relationship ; *Symporters ; Transcription Factors/chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, David D -- England -- Nature. 2013 Oct 24;502(7472):454-5. doi: 10.1038/502454a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24153294" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Circadian Rhythm ; Fatty Acids/*metabolism ; Lipids/*blood ; *Lipogenesis ; Liver/*metabolism ; Male
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-11
    Description: Autophagy is an evolutionarily conserved catabolic process that recycles nutrients upon starvation and maintains cellular energy homeostasis. Its acute regulation by nutrient-sensing signalling pathways is well described, but its longer-term transcriptional regulation is not. The nuclear receptors peroxisome proliferator-activated receptor-alpha (PPARalpha) and farnesoid X receptor (FXR) are activated in the fasted and fed liver, respectively. Here we show that both PPARalpha and FXR regulate hepatic autophagy in mice. Pharmacological activation of PPARalpha reverses the normal suppression of autophagy in the fed state, inducing autophagic lipid degradation, or lipophagy. This response is lost in PPARalpha knockout (Ppara(-/-), also known as Nr1c1(-/-)) mice, which are partially defective in the induction of autophagy by fasting. Pharmacological activation of the bile acid receptor FXR strongly suppresses the induction of autophagy in the fasting state, and this response is absent in FXR knockout (Fxr(-/-), also known as Nr1h4(-/-)) mice, which show a partial defect in suppression of hepatic autophagy in the fed state. PPARalpha and FXR compete for binding to shared sites in autophagic gene promoters, with opposite transcriptional outputs. These results reveal complementary, interlocking mechanisms for regulation of autophagy by nutrient status.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267857/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267857/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jae Man -- Wagner, Martin -- Xiao, Rui -- Kim, Kang Ho -- Feng, Dan -- Lazar, Mitchell A -- Moore, David D -- DK43806/DK/NIDDK NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- P30DX56338-05A2/PHS HHS/ -- P39CA125123-04/CA/NCI NIH HHS/ -- R01 DK049780/DK/NIDDK NIH HHS/ -- R01 DK49780/DK/NIDDK NIH HHS/ -- R37 DK043806/DK/NIDDK NIH HHS/ -- S10RR027783-01A1/RR/NCRR NIH HHS/ -- U54HD-07495-39/HD/NICHD NIH HHS/ -- England -- Nature. 2014 Dec 4;516(7529):112-5. doi: 10.1038/nature13961. Epub 2014 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Division of Endocrinology, Diabetes, and Metabolism and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383539" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/genetics/*physiology ; Cell Line ; Cells, Cultured ; Fasting/physiology ; Gene Expression Regulation ; Hepatocytes/metabolism ; Liver/cytology/*metabolism/ultrastructure ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microtubule-Associated Proteins/genetics/metabolism ; PPAR alpha ; Receptors, Cytoplasmic and Nuclear/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-27
    Description: Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine (DLPC)) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver-specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signalling pathway that regulates bile acid metabolism and glucose homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150801/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150801/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jae Man -- Lee, Yoon Kwang -- Mamrosh, Jennifer L -- Busby, Scott A -- Griffin, Patrick R -- Pathak, Manish C -- Ortlund, Eric A -- Moore, David D -- DK-079638/DK/NIDDK NIH HHS/ -- R01 CA134873/CA/NCI NIH HHS/ -- R01 DK068804/DK/NIDDK NIH HHS/ -- R01 DK083572/DK/NIDDK NIH HHS/ -- R01 DK083572-02/DK/NIDDK NIH HHS/ -- T32 DK007696/DK/NIDDK NIH HHS/ -- U54 MH084512/MH/NIMH NIH HHS/ -- England -- Nature. 2011 May 25;474(7352):506-10. doi: 10.1038/nature10111.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21614002" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/biosynthesis/metabolism/pharmacology ; Blood Glucose/metabolism ; Cell Line ; Disease Models, Animal ; Fatty Liver/drug therapy/enzymology ; HeLa Cells ; Homeostasis/drug effects ; Humans ; Hypoglycemic Agents/pharmacology ; Insulin Resistance/physiology ; Ligands ; Lipogenesis/drug effects ; Liver/drug effects/enzymology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Phosphatidylcholines/*metabolism/pharmacology ; Protein Binding ; Receptors, Cytoplasmic and Nuclear/agonists/deficiency/genetics/*metabolism ; Signal Transduction/drug effects ; Triglycerides/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-05-31
    Description: SHP is an orphan member of the nuclear hormone receptor superfamily that contains the dimerization and ligand-binding domain found in other family members but lacks the conserved DNA binding domain. In the yeast two-hybrid system, SHP interacted with several conventional and orphan members of the receptor superfamily, including retinoid receptors, the thyroid hormone receptor, and the orphan receptor MB67. SHP also interacted directly with these receptors in vitro. In mammalian cells, SHP specifically inhibited transactivation by the superfamily members with which it interacted. These results suggest that SHP functions as a negative regulator of receptor-dependent signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seol, W -- Choi, H S -- Moore, D D -- DK46546/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1996 May 31;272(5266):1336-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston, 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650544" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; DAX-1 Orphan Nuclear Receptor ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Humans ; Mice ; Molecular Sequence Data ; Receptors, Cytoplasmic and Nuclear/chemistry/*metabolism ; Receptors, Retinoic Acid/chemistry/metabolism ; Receptors, Thyroid Hormone/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; *Repressor Proteins ; Retinoid X Receptors ; Signal Transduction ; Transcription Factors/chemistry/metabolism ; Transcriptional Activation/drug effects ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-06-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, David D -- New York, N.Y. -- Science. 2007 Jun 8;316(5830):1436-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. moore@bcm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17556573" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl Coenzyme A/metabolism ; Adenosine Monophosphate/metabolism ; Animals ; Body Temperature ; Energy Metabolism ; Fasting ; Fatty Acids/*metabolism ; Fibroblast Growth Factors/genetics/*metabolism/pharmacology ; Glucuronidase/metabolism ; Glycoside Hydrolases/metabolism ; Homeostasis ; Humans ; Ketone Bodies/metabolism ; Lipase/metabolism ; Liver/*metabolism ; Membrane Proteins/*metabolism ; Mice ; Mice, Transgenic ; Motor Activity ; Oxidation-Reduction ; PPAR alpha/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-03
    Description: Lysosomes are crucial cellular organelles for human health that function in digestion and recycling of extracellular and intracellular macromolecules. We describe a signaling role for lysosomes that affects aging. In the worm Caenorhabditis elegans, the lysosomal acid lipase LIPL-4 triggered nuclear translocalization of a lysosomal lipid chaperone LBP-8, which promoted longevity by activating the nuclear hormone receptors NHR-49 and NHR-80. We used high-throughput metabolomic analysis to identify several lipids in which abundance was increased in worms constitutively overexpressing LIPL-4. Among them, oleoylethanolamide directly bound to LBP-8 and NHR-80 proteins, activated transcription of target genes of NHR-49 and NHR-80, and promoted longevity in C. elegans. These findings reveal a lysosome-to-nucleus signaling pathway that promotes longevity and suggest a function of lysosomes as signaling organelles in metazoans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425353/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425353/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Folick, Andrew -- Oakley, Holly D -- Yu, Yong -- Armstrong, Eric H -- Kumari, Manju -- Sanor, Lucas -- Moore, David D -- Ortlund, Eric A -- Zechner, Rudolf -- Wang, Meng C -- F30 AG046043/AG/NIA NIH HHS/ -- F30AG046043/AG/NIA NIH HHS/ -- R00 AG034988/AG/NIA NIH HHS/ -- R00AG034988/AG/NIA NIH HHS/ -- R01 AG045183/AG/NIA NIH HHS/ -- R01 DK095750/DK/NIDDK NIH HHS/ -- R01AG045183/AG/NIA NIH HHS/ -- R01DK095750/DK/NIDDK NIH HHS/ -- T32 GM008602/GM/NIGMS NIH HHS/ -- T32GM008602/GM/NIGMS NIH HHS/ -- T32HD055200/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 2;347(6217):83-6. doi: 10.1126/science.1258857.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA. ; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. ; Department of Biochemistry, Discovery and Developmental Therapeutics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA. ; Institute of Molecular Biosciences, University of Graz, Graz, A-8010, Austria. ; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA. ; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. ; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA. Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. wmeng@bcm.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25554789" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Nucleus/metabolism ; Lipase/metabolism ; Lipid Metabolism ; Longevity/genetics/*physiology ; Lysosomes/*metabolism ; Molecular Chaperones/genetics/*metabolism ; Receptors, Cytoplasmic and Nuclear/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...