ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SPACECRAFT PROPULSION AND POWER  (5)
  • RESEARCH AND SUPPORT FACILITIES (AIR)  (4)
  • 1
    Publication Date: 2019-06-28
    Description: An experimental investigation of the starting transients of the thermally choked ram accelerator is presented in this paper. Construction of a highly instrumented tube section and instrumentation inserts provide high resolution experimental pressure, luminosity, and electromagnetic data of the starting transients. Data obtained prior to and following the entrance diaphragm show detailed development of shock systems in both combustible and inert mixtures. With an evacuated launch tube, starting the diffuser is possible at any Mach number above the Kantrowitz Mach number. The detrimental effects and possible solutions of higher launch tube pressures and excessive obturator leakage (blow-by) are discussed. Ignition of a combustible mixture is demonstrated with both perforated and solid obturators. The relative advantages and disadvantages of each are discussed. Data obtained from these starting experiments enhance the understanding of the ram accelerator, as well as assist in the validation of unsteady, chemically reacting CFD codes.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: JHU, The 29th JANNAF Combustion Subcommittee Meeting, Volume 1; p 211-234
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: JHU, The 29th JANNAF Combustion Subcommittee Meeting, Volume 1; p 189-210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: AIAA PAPER 92-3949
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The ram accelerator, a chemically propelled mass driver, is presented as a viable new approach for directly launching acceleration-insensitive payloads into low earth orbit. The propulsion principle is similar to that of a conventional air-breathing ramjet. The cargo vehicle resembles the center-body of a ramjet and travels through a tube filled with a pre-mixed fuel and oxidizer mixture. The launch tube acts as the outer cowling of the ramjet and the combustion process travels with the vehicle. Two drive modes of the ram accelerator propulsion system are described, which when used in sequence are capable of accelerating the vehicle to as high as 10 km/sec. The requirements are examined for placing a 2000 kg vehicle into a 500 km orbit with a minimum of on-board rocket propellant for circularization maneuvers. It is shown that aerodynamic heating during atmospheric transit results in very little ablation of the nose. An indirect orbital insertion scenario is selected, utilizing a three step maneuver consisting of two burns and aerobraking. An on-board propulsion system using storable liquid propellants is chosen in order to minimize propellant mass requirements, and the use of a parking orbit below the desired final orbit is suggested as a means to increase the flexibility of the mass launch concept. A vehicle design using composite materials is proposed that will best meet the structural requirements, and a preliminary launch tube design is presented.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 88-2968
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Work on hypersonic propulsion research using a ram accelerator is presented. Several different ram accelerator propulsive cycles have been experimentally demonstrated over the Mach number range of 3 to 8.5. The subsonic, thermally choked combustion mode has accelerated projectiles to near the Chapman-Jouguet (C-J) detonation velocity within many different propellant mixtures. In the transdetonative velocity regime (85 to 115 percent of C-J speed), projectiles have established a propulsive cycle which allows them to transition smoothly from subdetonative to superdetonative velocities. Luminosity data indicate that the combustion process moves forward onto the projectile body as it approaches the C-J speed. In the superdetonative velocity range, the projectiles accelerate while always traveling faster than the C-J velocity. Ram accelerator projectiles operating continuously through these velocity regimes generate distinctive hypersonic phenomena which can be studied very effectively in the laboratory. These results would be very useful for validating sophisticated CFD computer codes and in collecting engineering data for potential airbreathing hypersonic propulsive systems.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: AIAA PAPER 91-2489
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A high-effectiveness liquid droplet/gas heat exchanger (LDHX) concept for thermal management in space is described. Heat is transferred by direct contact between fine droplets (approximately 100-300 microns in diameter) of a suitable low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the zero-g environment is accomplished by configuring the LDHX as a vortex chamber.The large heat transfer area presented by the small droplets permits heat exchanger effectiveness of 0.9-0.95 in a compact, lightweight geometry which avoids many of the limitations of conventional plate and fin or tube and shell heat exchangers, such as their tendency toward single point failure. The application of the LDHX in a high temperature Brayton cycle is discussed to illustrate the performance and operational characteristics of this new heat exchanger concept.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: IAF PAPER 83-433
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: NASA-CR-199376 , NAS 1.26:199376
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: NASA-TM-105644 , E-6999 , NAS 1.15:105644 , AIAA PAPER 92-3995 , Aerospace Ground Testing Conference; Jul 06, 1992 - Jul 08, 1992; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-27
    Description: The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: AIAA PAPER 92-3995
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...