ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-05-29
    Description: Elevations measured by the Mars Orbiter Laser Altimeter have yielded a high-accuracy global map of the topography of Mars. Dominant features include the low northern hemisphere, the Tharsis province, and the Hellas impact basin. The northern hemisphere depression is primarily a long-wavelength effect that has been shaped by an internal mechanism. The topography of Tharsis consists of two broad rises. Material excavated from Hellas contributes to the high elevation of the southern hemisphere and to the scarp along the hemispheric boundary. The present topography has three major drainage centers, with the northern lowlands being the largest. The two polar cap volumes yield an upper limit of the present surface water inventory of 3.2 to 4.7 million cubic kilometers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, D E -- Zuber, M T -- Solomon, S C -- Phillips, R J -- Head, J W -- Garvin, J B -- Banerdt, W B -- Muhleman, D O -- Pettengill, G H -- Neumann, G A -- Lemoine, F G -- Abshire, J B -- Aharonson, O -- Brown, C D -- Hauck, S A -- Ivanov, A B -- McGovern, P J -- Zwally, H J -- Duxbury, T C -- New York, N.Y. -- Science. 1999 May 28;284(5419):1495-503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Earth Sciences Directorate, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA. dsmith@tharsis.gsfc.nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10348732" target="_blank"〉PubMed〈/a〉
    Keywords: *Evolution, Planetary ; Extraterrestrial Environment ; Ice ; *Mars ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-04-03
    Description: Loading of the lithosphere of Mars by the Tharsis rise explains much of the global shape and long-wavelength gravity field of the planet, including a ring of negative gravity anomalies and a topographic trough around Tharsis, as well as gravity anomaly and topographic highs centered in Arabia Terra and extending northward toward Utopia. The Tharsis-induced trough and antipodal high were largely in place by the end of the Noachian Epoch and exerted control on the location and orientation of valley networks. The release of carbon dioxide and water accompanying the emplacement of approximately 3 x 10(8) cubic kilometers of Tharsis magmas may have sustained a warmer climate than at present, enabling the formation of ancient valley networks and fluvial landscape denudation in and adjacent to the large-scale trough.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Phillips, R J -- Zuber, M T -- Solomon, S C -- Golombek, M P -- Jakosky, B M -- Banerdt, W B -- Smith, D E -- Williams, R M -- Hynek, B M -- Aharonson, O -- Hauck , S A 2nd -- New York, N.Y. -- Science. 2001 Mar 30;291(5513):2587-91. Epub 2001 Mar 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McDonnell Center for the Space Sciences and Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11283367" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Carbon Dioxide ; *Evolution, Planetary ; Extraterrestrial Environment ; Gravitation ; *Mars ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-03-10
    Description: Topography and gravity measured by the Mars Global Surveyor have enabled determination of the global crust and upper mantle structure of Mars. The planet displays two distinct crustal zones that do not correlate globally with the geologic dichotomy: a region of crust that thins progressively from south to north and encompasses much of the southern highlands and Tharsis province and a region of approximately uniform crustal thickness that includes the northern lowlands and Arabia Terra. The strength of the lithosphere beneath the ancient southern highlands suggests that the northern hemisphere was a locus of high heat flow early in martian history. The thickness of the elastic lithosphere increases with time of loading in the northern plains and Tharsis. The northern lowlands contain structures interpreted as large buried channels that are consistent with northward transport of water and sediment to the lowlands before the end of northern hemisphere resurfacing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuber, M T -- Solomon, S C -- Phillips, R J -- Smith, D E -- Tyler, G L -- Aharonson, O -- Balmino, G -- Banerdt, W B -- Head, J W -- Johnson, C L -- Lemoine, F G -- McGovern, P J -- Neumann, G A -- Rowlands, D D -- Zhong, S -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1788-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. zuber@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710301" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Evolution, Planetary ; *Extraterrestrial Environment ; Geologic Sediments ; Gravitation ; *Mars ; Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: In this work, theoretical lunar temperature models are computed taking into account different initial conditions to represent possible accretion models and various abundances of heat sources to correspond to different compositions. Differentiation and convection are simulated in the numerical computational scheme. Models of the thermal evolution of the moon that fit the chronology of igneous activity on the lunar surface, the stress history of the lunar lithosphere implied by the presence of mascons, and the surface concentrations of radioactive elements, involve extensive differentiation early in lunar history. This differentiation may be the result of rapid accretion and large-scale melting or of primary chemical layering during accretion. Differences in present-day temperatures for these two possibilities are significant only in the inner 1000 km of the moon and are not resolvable with presently available data.
    Keywords: SPACE SCIENCES
    Type: The Moon; 7; May-June
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-27
    Description: The thermal history and current state of the lunar interior are investigated using constraints imposed by recent geological and physical data. Theoretical temperature models are computed taking into account different initial conditions, heat sources, differentiation and simulated convection. To account for the early formation of the lunar highlands, the time duration of magmatism and present-day temperatures estimated from lunar electrical conductivity profiles, it is necessary to restrict initial temperatures and abundances of radioactive elements. Successful models require that the outer half of the moon initially heated to melting temperatures, probably due to rapid accretion. Differentiation of radioactive heat sources toward the lunar surface occurred during the first 1.6 billion years. Temperatures in the outer 500 km are currently low, while the deep interior (radius less than 700 to 1000 km) is warmer than 1000 C, and is of primordial material.
    Keywords: SPACE SCIENCES
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: A number of simple density models for the moon are discussed. The considered models are consistent with the lunar mass and moment of inertia, the latest information on the seismic velocity of the lunar crust and mantle, and assorted estimates of temperature in the lunar interior. New material presented includes the implications for density models of recent seismic evidence for a thin, high velocity layer beneath the lunar crust and for a zone of partial melting below 1000 km depth. The consequences of a dense, iron-rich central core are also explored.
    Keywords: SPACE SCIENCES
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: Models for lunar density distribution consistent with available data on lunar physical properties
    Keywords: SPACE SCIENCES
    Type: ; YAL SOCIETY (
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: The composition, structure and evolution of the moon's interior are narrowly constrained by a large assortment of physical and chemical data. Models of the thermal evolution of the moon that fit the chronology of igneous activity on the lunar surface, the stress history of the lunar lithosphere implied by the presence of mascons, and the surface concentrations of radioactive elements, involve extensive differentiation early in lunar history. This differentiation may be the result of rapid accretion and large-scale melting or of primary chemical layering during accretion; differences in present-day temperatures for these two possibilities are significant only in the inner 1000 km of the moon and may not be resolvable.
    Keywords: SPACE SCIENCES
    Type: Physics of the Earth and Planetary Interiors; 7; Apr. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Seismic data from the Apollo Passive Seismic Network stations are analyzed to determine the velocity structure and to infer the composition and physical properties of the lunar interior. Data from artificial impacts (SIBV booster and LM-ascent stage) cover a distance range of 9 to 1750 km. Travel times and amplitudes, as well as theoretical seismograms, are used to derive a velocity model for the outer 150 km of the moon. The P-wave velocity model confirms an earlier report of a lunar crust in the eastern part of Oceanus Procellarum. The crust is about 60 km thick and may consist of two layers in the mare regions. Possible values for the P-wave velocity in the uppermost mantle are between 7.6 and 9.0 km/sec. The 9 km/sec velocity represents either a localized heterogeneous unit, or a thin layer less than about 40 km in thickness. The elastic properties of the deep interior, as inferred from the seismograms of natural events (meteoroid impacts and moonquakes) occurring at great distances, indicate that there is an increase in attenuation and a possible decrease of velocity at depths below about 1000 km.
    Keywords: SPACE SCIENCES
    Type: Lunar Science Conference; Mar 05, 1973 - Mar 08, 1973; Houston, TX
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...