ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Regeneration  (2)
  • Bulked segregant analysis  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell reports 10 (1991), S. 152-155 
    ISSN: 1432-203X
    Keywords: Daucus ; Regeneration ; Ethylene ; Protein ; Isozymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cultures derived from domestic carrot (Daucus carota L.) inbreds were found to vary with respect to regeneration potential as measured by the production of somatic embryos in suspension cultures. A number of biochemical parameters previously reported to distinguish embryogenic from non-embryogenic cultures of other species were measured in these carrot cell lines. Ethylene production was found to be inversely related to regeneration potential. The cell line producing the greatest number of somatic embryos exhibited the lowest rate of ethylene biosynthesis, even when grown on 2, 4-D-containing maintenance medium. A specific isozyme of acid phosphatase was associated with embryogenic calli. Proteins visualized by SDS-PAGE did not discriminate between embryo-forming and proliferating calli in all inbreds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-203X
    Keywords: Key words Garlic ; Allium sativum L. ; Root segments ; Regeneration ; Picloram
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Root segments from shoot tip-derived plantlets of the garlic (Allium sativum L.) clones `DDR7099', `PI383819', and `Piacenza' were utilized as an explant source for continuous, friable callus production. The best callus production occurred on root segments initially cultured on medium with 4,5 μm 2,4-dichlorophenoxyacetic acid (2,4-D) for 8 weeks, then subcultured to medium with 4.7 μm 4-amino-3,5,6-trichloropicolinic acid (picloram) +0.49 μm 6-(γ-γ-dimethylallylamino)purine (2iP) for 8 weeks. Embryogenic, friable callus was transferred to liquid medium for 1 month and then transferred to solid regeneration medium for 14 weeks. The best shoot and root regeneration (85.3% and 35.8%, respectively) occurred on 4-month-old calli from the clone `DDR7099'. In all clones, regeneration rate decreased as callus age increased.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 97 (1998), S. 960-967 
    ISSN: 1432-2242
    Keywords: Key words AFLP ; Bulked segregant analysis ; Daucus carota ; Inverse PCR ; Marker conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Recent advances have expanded the potential usefulness of molecular techniques for plant genetic research. AFLP is a powerful technique, allowing rapid and reliable analysis of multiple, potentially polymorphic sites in a single experiment. Because AFLP technology requires no a priori knowledge of genome structure or preparation of molecular probes, it is immediately useful for a wide variety of plant species. However, because AFLP markers are dominant, costly, and technologically demanding, the technique has limited application for large-scale, locus-specific uses. In carrot, the Y 2 locus controls carotene accumulation in the root xylem core. Although carrot is an important source of dietary carotene, little is known about the regulation and biosynthesis of carotenes in carrot. We identified six AFLP fragments linked to the Y 2 locus through a combination of F2 mapping and bulked segregant analysis. We have developed a procedure for generating simple, codominant, PCR-based markers from dominant AFLP fragments using a Y 2 -linked AFLP fragment as a model. Our converted marker requires only a simple PCR followed by standard agarose gel electrophoresis. It is rapid, simple, reliable, comparatively inexpensive, codominant, and non-radioactive. Conversion of AFLP fragments to forms better adapted to large-scale, locus-specific applications greatly expands the usefulness of this molecular technique.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...