ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Chromosomal stability ; Recombination ; Mitosis ; Meiosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The recessive hyperrecombination mutation rec46-1, isolated by ultraviolet light mutagenesis of the MATα n+1 chromosome VII disomic strain LBW (Esposito et al. 1982), enhances the mitotic rates of spontaneous gene conversion, intergenic recombination and restitution of haploidy (due to chromosomal loss or mitotic nondisjunction) in MATα n+1 chromosome VII disomic strains. The rec46-1 mutation does not prevent HO directed homothallic interconversion of mating types. MATaIMaTα ree46-1/rec46-1 diploids exhibit the same degree of hyperrecombinational activity as MATα rec46-1 n+1 chromosome VII disomics with respect to gene conversion and intergenic recombination resulting in prototrophy. When compared to MATα rec46-1 n+1 disomics however, MATa/MATα rec46-1/rec46-1 diploids exhibit a ten fold reduced level of hyperrecombinational activity with respect to intergenic recombination and present no evidence of chromosomal loss or nondisjunction resulting in 2n-1 monosomic segregants. MATaIMATα rec46-1/rec46-1 diploids are sporulation-deficient. The results obtained demonstrate that the REC46 gene product modulates mitotic chromosomal stability and recombination and is essential for sporulation (meiosis and ascospore formation).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: S. cerevisiae ; Spontaneous mutation ; Mitotic segregation ; Loss of heterozygosity ; Recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have employed the analysis of spontaneous forward mutations that confer the ability to utilize L-α-aminoadipate as a nitrogen source (α-Aa+) to discern the events that contribute to mitotic segregation of spontaneous recessive mutations by diploid cells. α-Aa- diploid cells yield α-Aa+ mutants at a rate of 7.8±3.6×10-9. As in haploid strains, approximately 97% (30/31) of α-Aa+ mutants are spontaneous lys2-x recessive mutations. α-Aa+ mutants of diploid cells reflect mostly the fate of LYS2/lys2-x heterozygotes that arise by mutation within LYS2/LYS2 populations at a rate of 1.2±0.4×10-6. Mitotic recombination occurs in nonrandom association with forward mutation of LYS2 at a rate of 1.3±0.6×10-3. This mitotic recombination rate is tenfold higher than that of a control LYS2/lys2-1 diploid. Mitotic segregation within LYS2/lys2-x subpopulations yields primarily lys2-x/lys2-x diploids and a minority of lys2-x aneuploids. Fifteen percent of lys2-x/lys2-x diploids appear to have arisen by gene conversion of LYS2 to lys2-x; 85% of lys2-x/lys2-x diploids appear to have arisen by mitotic recombination in the CENII-LYS2 interval. lys2-1/lys2-1 mitotic segregants of a control LYS2/lys2-1 diploid consist similarly of 18% of lys2-1/lys2-1 diploids that appear to have arisen by gene conversion of LYS2 to lys2-1 and 82% of lys2-1/lys2-1 diploids that appear to have arisen by mitotic recombination in the CENII-LYS2 interval. The methods described can be used to simultaneously monitor the effects of yeast gene mutations and carcinogens on the principal parameters affecting the genomic stability of diploid mitotic cells: mutation, gene conversion, intergenic recombination, and chromosomal loss or rearrangement.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 430-434 
    ISSN: 1432-0983
    Keywords: S. cerevisiae ; Mutational homozygosis ; Loss of heterozygosity ; Mutation ; Recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A leucine-requiring hybrid of Saccharomyces cerevisiae, homoallelic at the LEU1 locus (leu1–12/leu1–12) and heterozygous for three chromosome-VII genetic markers distal to the LEU1 locus, was employed to inquire: (1) whether spontaneous gene mutation and mitotic segregation of heterozygous markers occur in positive nonrandom association and (2) whether homozygous LEU1/LEU1 mutant diploids are generated. The results demonstrate that gene mutation of leu1–12 to LEU1 and mitotic segregation of heterozygous chromosome-VII markers occur in strong positive nonrandom association, suggesting that the stimulatory DNA lesion is both mutagenic and recombinogenic. In addition, genetic analysis of diploid Leu+ revertants revealed that approximately 3% of mutations of leu1–12 to LEU1 result in LEU1/LEU1 homozygotes. Red-white sectored Leu+ colonies exhibit genotypes that implicate postreplicational chromatid breakage and exchange near the site of leu1–12 reversion, chromosome loss, and subsequent restitution of diploidy, in the sequence of events leading to mutational homozygosis. By analogy, diploid cell populations can yield variants homozygous for novel recessive gene mutations at biologically significant rates. Mutational homozygosis may be relevant to both carcinogenesis and the evolution of asexual diploid organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 17 (1990), S. 7-12 
    ISSN: 1432-0983
    Keywords: REC genes ; Recombination ; Gene conversion ; Sporulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have isolated and characterized three conditional hyporecombination mutants, rec1-1, rec3-1 and rec4-1, that define three REC genes of Saccharomyces cerevisiae required for spontaneous general mitotic interchromosomal recombination. Each MATa/MATα rec/rec diploid is deficient in mitotic single site gene conversion, intragenic recombination, intergenic recombination and sporulation at the restrictive temperature (36°C). The rec1-1 mutation also confers conditional enhanced sensitivity to the killing effects of X-rays. The rec1-1 and rec3-1 mutations have been mapped to chromosome VII. The rec1-1, rec3-1 and rec4-1 mutations exhibit complementation at 36°C for both mitotic recombination and sporulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...