ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-05
    Description: How does an animal know where it is when it stops moving? Hippocampal place cells fire at discrete locations as subjects traverse space, thereby providing an explicit neural code for current location during locomotion. In contrast, during awake immobility, the hippocampus is thought to be dominated by neural firing representing past and possible future experience. The question of whether and how the hippocampus constructs a representation of current location in the absence of locomotion has been unresolved. Here we report that a distinct population of hippocampal neurons, located in the CA2 subregion, signals current location during immobility, and does so in association with a previously unidentified hippocampus-wide network pattern. In addition, signalling of location persists into brief periods of desynchronization prevalent in slow-wave sleep. The hippocampus thus generates a distinct representation of current location during immobility, pointing to mnemonic processing specific to experience occurring in the absence of locomotion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kay, Kenneth -- Sosa, Marielena -- Chung, Jason E -- Karlsson, Mattias P -- Larkin, Margaret C -- Frank, Loren M -- R01 MH090188/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 10;531(7593):185-90. doi: 10.1038/nature17144. Epub 2016 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UCSF Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, California 94158, USA. ; Howard Hughes Medical Institute, University of California San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934224" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Hippocampus/anatomy & histology/*cytology/*physiology ; Male ; Models, Neurological ; Movement ; Neurons/*physiology ; Orientation/*physiology ; Rats ; Rats, Long-Evans ; Sleep/*physiology ; Space Perception/*physiology ; Spatial Memory/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...