ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-19
    Description: The late-tectonic 511.4 ± 0.6 Ma-old Nomatsaus intrusion (Donkerhoek batholith, Damara orogen, Namibia) consists of moderately peraluminous, magnesian, calc-alkalic to calcic granites similar to I-type granites worldwide. Major and trace-element variations and LREE and HREE concentrations in evolved rocks imply that the fractionated mineral assemblage includes biotite, Fe–Ti oxides, zircon, plagioclase and monazite. Increasing K2O abundance with increasing SiO2 suggests accumulation of K-feldspar; compatible with a small positive Eu anomaly in the most evolved rocks. In comparison with experimental data, the Nomatsaus granite was likely generated from meta-igneous sources of possibly dacitic composition that melted under water-undersaturated conditions (X H2O: 0.25–0.50) and at temperatures between 800 and 850 °C, compatible with the zircon and monazite saturation temperatures of 812 and 852 °C, respectively. The Nomatsaus granite has moderately radiogenic initial 87Sr/86Sr ratios (0.7067–0.7082), relatively radiogenic initial εNd values (− 2.9 to − 4.8) and moderately evolved Pb isotope ratios. Although initial Sr and Nd isotopic compositions of the granite do not vary with SiO2 or MgO contents, fSm/Nd and initial εNd values are negatively correlated indicating limited assimilation of crustal components during monazite-dominated fractional crystallization. The preferred petrogenetic model for the generation of the Nomatsaus granite involves a continent–continent collisional setting with stacking of crustal slices that in combination with high radioactive heat production rates heated the thickened crust, leading to the medium-P/high-T environment characteristic of the southern Central Zone of the Damara orogen. Such a setting promoted partial melting of metasedimentary sources during the initial stages of crustal heating, followed by the partial melting of meta-igneous rocks at mid-crustal levels at higher P–T conditions and relatively late in the orogenic evolution.
    Description: Deutsche Forschungsgemeinschaft
    Description: Universität Hamburg (1037)
    Keywords: ddc:552.3 ; Nomatsaus granite ; Donkerhoek batholith ; Damara Orogen ; Radiogenic isotopes ; U–Pb monazite geochronology
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0016-7835
    Keywords: Key words Costa Rica ; Ophiolites ; Oceanic crust ; Hotspot ; Galápagos islands ; Volcanology ; Petrology ; Geochemistry ; Isotopes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The Quepos, Nicoya and Herradura oceanic igneous terranes in Costa Rica are conspicuous features of a Mid to Late Cretaceous regional magmatic event that encompasses similar terranes in Central America, Colombia, Ecuador and the Caribbean. The Quepos terrane (66 Ma), which consists of ol-cpx phyric, tholeiitic pillow lavas overlain by highly vesicular hyaloclastites, breccias and conglomerates, is interpreted as an uplifted seamount/ocean island complex. The Nicoya (∼90 Ma) and Herradura terranes consist of fault-bounded sequences of sediments, tholeiitic volcanics (pillow lavas and massive sheet flows) and plutonic rocks. The volcanic rocks were emplaced at relatively high eruption rates in moderate to deep water, possibly forming part of an oceanic plateau. Major and trace element data from Nicoya/Herradura tholeiites indicate higher melting temperatures than inferred for normal mid-ocean-ridge basalts (MORB) and/or a different source composition. Sr–Nd–Pb isotopic ratios from all three terranes are distinct from MORB but resemble those from the Galápagos hotspot. The volcanological, petrological and geochemical data from Costa Rican volcanic terranes, combined with published age data, paleomagnetic results and plate tectonic reconstructions of this region, provide strong evidence for a Mid Cretaceous (∼90Ma) age for the Galápagos hotspot, making it one of the oldest known, active hotspots on Earth. Our results also support an origin of the Caribbean Plate through melting of the head of the Galápagos starting plume.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...