ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data management  (14)
  • Phytoplankton  (5)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 18 (2004): GB4030, doi:10.1029/2003GB002216.
    Description: The geochemistry of cobalt in the Peru upwelling region is dominated by its importance as a micronutrient. A large and previously undocumented flux of labile cobalt behaved as a micronutrient with correlations with major nutrients (nitrate, phosphate; r 2 = 0.90, 0.96) until depleted to ≤50 pM of strongly complexed cobalt. Co:P utilization ratios were an order of magnitude higher than in the North Pacific, comparable to utilization rates of zinc in other oceanic regions. Cobalt speciation measurements showed that available cobalt decreased over 4 orders of magnitude in this region, with shifts in phytoplankton assemblages occurring at transitions between labile and nonlabile cobalt. Only small changes in total dissolved nickel were observed, and nickel was present in a labile chemical form throughout the region. In the Peru upwelling region, cobalt uptake was highest at the surface and decreased with depth, suggesting phytoplankton uptake was a more important removal mechanism than co-oxidation with microbial manganese oxidation. These findings show the importance of cobalt as a micronutrient and that cobalt scarcity and speciation may be important in influencing phytoplankton species composition in this economically important environment.
    Description: This work was supported by the NSF under grant OCE-9618729 and OCE-0327225.
    Keywords: Cobalt speciation ; Nickel ; Peru upwelling ; Pacific ; Phytoplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Presented at AGU Fall Meeting, American Geophysical Union, Washington, D.C., 10 – 14 Dec 2018
    Description: Data repositories often transform submissions to improve understanding and reuse of data by researchers other than the original submitter. However, scientific workflows built by the data submitters often depend on the original data format. In some cases, this makes the repository’s final data product less useful to the submitter. As a result, these two workable but different versions of the data provide value to two disparate, non-interoperable research communities around what should be a single dataset. Data repositories could bridge these two communities by exposing provenance explaining the transform from original submission to final product. A subsequent benefit of this provenance would be the transparent value-add of domain repository data curation. To improve its data management process efficiency, the Biological and Chemical Oceanography Data Management Office (BCO-DMO, https://www.bco-dmo.org) has been adopting the data containerization specification defined by the Frictionless Data project (https://frictionlessdata.io). Recently, BCO-DMO has been using the Frictionless Data Package Pipelines Python library (https://github.com/frictionlessdata/datapackage-pipelines) to capture the data curation processing steps that transform original submissions to final data products. Because these processing steps are stored using a declarative language they can be converted to a structured provenance record using the Provenance Ontology (PROV-O, https://www.w3.org/TR/prov-o/). PROV-O abstracts the Frictionless Data elements of BCO-DMO’s workflow for capturing necessary curation provenance and enables interoperability with other external provenance sources and tools. Users who are familiar with PROV-O or the Frictionless Data Pipelines can use either record to reproduce the final data product in a machine-actionable way. While there may still be some curation steps that cannot be easily automated, this process is a step towards end-to-end reproducible transforms throughout the data curation process. In this presentation, BCO-DMO will demonstrate how Frictionless Data Package Pipelines can be used to capture data curation provenance from original submission to final data product exposing the concrete value-add of domain-specific repositories.
    Description: NSF #1435578
    Keywords: Provenance ; Frictionless Data ; Data management
    Repository Name: Woods Hole Open Access Server
    Type: Presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2015): 794, doi:10.3389/fmicb.2014.00794.
    Description: Atmospheric deposition is a major source of trace metals in marine surface waters and supplies vital micronutrients to phytoplankton, yet measured aerosol trace metal solubility values are operationally defined, and there are relatively few multi-element studies on aerosol-metal solubility in seawater. Here we measure the solubility of aluminum (Al), cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) from natural aerosol samples in seawater over a 7 days period to (1) evaluate the role of extraction time in trace metal dissolution behavior and (2) explore how the individual dissolution patterns could influence biota. Dissolution behavior occurs over a continuum ranging from rapid dissolution, in which the majority of soluble metal dissolved immediately upon seawater exposure (Cd and Co in our samples), to gradual dissolution, where metals dissolved slowly over time (Zn, Mn, Cu, and Al in our samples). Additionally, dissolution affected by interactions with particles was observed in which a decline in soluble metal concentration over time occurred (Fe and Pb in our samples). Natural variability in aerosol chemistry between samples can cause metals to display different dissolution kinetics in different samples, and this was particularly evident for Ni, for which samples showed a broad range of dissolution rates. The elemental molar ratio of metals in the bulk aerosols was 23,189Fe: 22,651Al: 445Mn: 348Zn: 71Cu: 48Ni: 23Pb: 9Co: 1Cd, whereas the seawater soluble molar ratio after 7 days of leaching was 11Fe: 620Al: 205Mn: 240Zn: 20Cu: 14Ni: 9Pb: 2Co: 1Cd. The different kinetics and ratios of aerosol metal dissolution have implications for phytoplankton nutrition, and highlight the need for unified extraction protocols that simulate aerosol metal dissolution in the surface ocean.
    Description: This work was supported by NSF-OCE grant 0850467 to Adina Paytan, NSF-OCE grant 1233261 to Mak A. Saito, and NATO Science for Peace Grant to Adina Paytan and Anton F. Post (SfP 982161). Katherine R. M. Mackey was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology (Grant No. NSF 1103575) and Chia-Te Chien by an international graduate student fellowship from the ministry of education, Taiwan.
    Keywords: Aerosols ; Atmospheric deposition ; Phytoplankton ; Trace metals ; Ligands
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 3 (2012): 385, doi:10.3389/fmicb.2012.00385.
    Description: Genes that are constitutively expressed across multiple environmental stimuli are crucial to quantifying differentially expressed genes, particularly when employing quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assays. However, the identification of these potential reference genes in non-model organisms is challenging and is often guided by expression patterns in distantly related organisms. Here, transcriptome datasets from the diatom Thalassiosira pseudonana grown under replete, phosphorus-limited, iron-limited, and phosphorus and iron co-limited nutrient regimes were analyzed through literature-based searches for homologous reference genes, k-means clustering, and analysis of sequence counts (ASC) to identify putative reference genes. A total of 9759 genes were identified and screened for stable expression. Literature-based searches surveyed 18 generally accepted reference genes, revealing 101 homologs in T. pseudonana with variable expression and a wide range of mean tags per million. k-means analysis parsed the whole transcriptome into 15 clusters. The two most stable clusters contained 709 genes, but still had distinct patterns in expression. ASC analyses identified 179 genes that were stably expressed (posterior probability 〈 0.1 for 1.25 fold change). Genes known to have a stable expression pattern across the test treatments, like actin, were identified in this pool of 179 candidate genes. ASC can be employed on data without biological replicates and was more robust than the k-means approach in isolating genes with stable expression. The intersection of the genes identified through ASC with commonly used reference genes from the literature suggests that actin and ubiquitin ligase may be useful reference genes for T. pseudonana and potentially other diatoms. With the wealth of transcriptome sequence data becoming available, ASC can be easily applied to transcriptome datasets from other phytoplankton to identify reference genes.
    Description: This research was funded by the National Science Foundation grant #OCE-0723667 (to Sonya T. Dyhrman, Mak A. Saito, Bethany D. Jenkins, and Tatiana A. Rynearson). Harriet Alexander is funded under a National Defense Science and Engineering Graduate (NDSEG) Fellowship.
    Keywords: Thalassiosira pseudonana ; Diatom ; Phytoplankton ; Housekeeping genes ; RT-qPCR ; Transcriptome ; Relative gene expression ; Reference gene
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12019, doi:10.1029/2010JC006553.
    Description: The Ross Sea polynya is among the most productive regions in the Southern Ocean and may constitute a significant oceanic CO2 sink. Based on results from several field studies, this region has been considered seasonally iron limited, whereby a “winter reserve” of dissolved iron (dFe) is progressively depleted during the growing season to low concentrations (~0.1 nM) that limit phytoplankton growth in the austral summer (December–February). Here we report new iron data for the Ross Sea polynya during austral summer 2005–2006 (27 December–22 January) and the following austral spring 2006 (16 November–3 December). The summer 2005–2006 data show generally low dFe concentrations in polynya surface waters (0.10 ± 0.05 nM in upper 40 m, n = 175), consistent with previous observations. Surprisingly, our spring 2006 data reveal similar low surface dFe concentrations in the polynya (0.06 ± 0.04 nM in upper 40 m, n = 69), in association with relatively high rates of primary production (~170–260 mmol C m−2 d−1). These results indicate that the winter reserve dFe may be consumed relatively early in the growing season, such that polynya surface waters can become “iron limited” as early as November; i.e., the seasonal depletion of dFe is not necessarily gradual. Satellite observations reveal significant biomass accumulation in the polynya during summer 2006–2007, implying significant sources of “new” dFe to surface waters during this period. Possible sources of this new dFe include episodic vertical exchange, lateral advection, aerosol input, and reductive dissolution of particulate iron.
    Description: This research was supported by U.S. National Science Foundation awards OPP-0338164 to PNS, OPP- 0338350 to RBD, OPP-0440840 to MAS, OPP-0338157 to WOS, and OPP-0338097 to GRD.
    Description: 2012-06-15
    Keywords: Ross Sea ; Iron ; Phytoplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Presented at Data Curation Network, May 15, 2020
    Description: At domain-specific data repositories, curation that strives for FAIR principles often entails transforming data submissions to improve understanding and reuse. The Biological and Chemical Oceanography Data Management Office (BCO-DMO, https://www.bco-dmo.org) has been adopting the data containerization specification of the Frictionless Data project (https://frictionlessdata.io) in an effort to improve its data curation process efficiency. In doing so, BCO-DMO has been using the Frictionless Data Package Pipelines library (https://github.com/frictionlessdata/datapackage-pipelines) to define the processing steps that transform original submissions to final data products. Because these pipelines are defined using a declarative language they can be serialized into formal provenance data structures using the Provenance Ontology (PROV-O, https://www.w3.org/TR/prov-o/). While there may still be some curation steps that cannot be easily automated, this method is a step towards reproducible transforms that bridge the original data submission to its published state in machine-actionable ways that benefit the research community through transparency in the data curation process. BCO-DMO has built a user interface on top of these modular tools for making it easer for data managers to process submission, reuse existing workflows, and make transparent the added value of domain-specific data curation.
    Description: NSF #1924618
    Keywords: Data Curation ; Provenance ; Workflows ; Frictionless Data ; Data management ; Data repository
    Repository Name: Woods Hole Open Access Server
    Type: Presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Presented at USGS Data Management Working Group, 9, November 2020
    Description: At domain-specific data repositories, curation that strives for FAIR principles often entails transforming data submissions to improve understanding and reuse. The Biological and Chemical Oceanography Data Management Office (BCO-DMO, https://www.bco-dmo.org) has been adopting the data containerization specification of the Frictionless Data project (https://frictionlessdata.io) in an effort to improve its data curation process efficiency. In doing so, BCO-DMO has been using the Frictionless Data Package Pipelines library (https://github.com/frictionlessdata/datapackage-pipelines) to define the processing steps that transform original submissions to final data products. Because these pipelines are defined using a declarative language they can be serialized into formal provenance data structures using the Provenance Ontology (PROV-O, https://www.w3.org/TR/prov-o/). While there may still be some curation steps that cannot be easily automated, this method is a step towards reproducible transforms that bridge the original data submission to its published state in machine-actionable ways that benefit the research community through transparency in the data curation process. BCO-DMO has built a user interface on top of these modular tools for making it easier for data managers to process submission, reuse existing workflows, and make transparent the added value of domain-specific data curation.
    Description: NSF #1924618
    Keywords: Data Curation ; Provenance ; Workflows ; Frictionless Data ; Data management ; Data repository
    Repository Name: Woods Hole Open Access Server
    Type: Presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Presented at Ocean Sciences Meeting (OSM), San Diego, CA, 16 - 21 February 2020
    Description: BCO-DMO is the Biological and Chemical Oceanography Data Management Office. We help oceanography researchers who are funded by the National Science Foundation’s (NSF's) Division of Ocean Sciences' (OCE) Biological or Chemical Oceanography Sections or the Division of Polar Programs' Antarctic Organisms & Ecosystems Program manage their data, making them accessible over the internet. This lightning talk gives a brief overview of who we are, who we work with, and the types of data we manage.
    Description: Award(s): NSF #1924618
    Keywords: Data Curation ; Data management ; Data repository
    Repository Name: Woods Hole Open Access Server
    Type: Presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Presented at AGU Ocean Sciences, 11 - 16 February 2018, Portland, OR
    Description: At the Biological and Chemical Oceanography Data Management Office (BCO-DMO) Big Data challenges have been steadily increasing. The sizes of data submissions have grown as instrumentation improves. Complex data types can sometimes be stored across different repositories . This signals a paradigm shift where data and information that is meant to be tightly-coupled and has traditionally been stored under the same roof is now distributed across repositories and data stores. For domain-specific repositories like BCO-DMO, a new mechanism for assembling data, metadata and supporting documentation is needed. Traditionally, data repositories have relied on a human's involvement throughout discovery and access workflows. This human could assess fitness for purpose by reading loosely coupled, unstructured information from web pages and documentation. Distributed storage was something that could be communicated in text that a human could read and understand. However, as machines play larger roles in the process of discovery and access of data, distributed resources must be described and packaged in ways that fit into machine automated workflows of discovery and access for assessing fitness for purpose by the end-user. Once machines have recommended a data resource as relevant to an investigator's needs, the data should be easy to integrate into that investigator's toolkits for analysis and visualization. BCO-DMO is exploring the idea of data containerization, or packaging data and related information for easier transport, interpretation, and use. Data containerization reduces not only the friction data repositories experience trying to describe complex data resources, but also for end-users trying to access data with their own toolkits. In researching the landscape of data containerization, the Frictionlessdata Data Package (http://frictionlessdata.io/) provides a number of valuable advantages over similar solutions. This presentation will focus on these advantages and how the Frictionlessdata Data Package addresses a number of real-world use cases faced for data discovery, access, analysis and visualization in the age of Big Data.
    Description: NSF #1435578, NSF #1639714
    Keywords: Frictionless Data ; Data management ; Data exchange ; Data Transport ; Distributed data ; Data tools ; Big data
    Repository Name: Woods Hole Open Access Server
    Type: Presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Presented at AGU Ocean Sciences, 11 - 16 February 2018, Portland, OR
    Description: The Biological and Chemical Oceanography Data Management Office (BCO-DMO) is a domain-specific digital data repository that works with investigators funded under the National Science Foundation’s Division of Ocean Sciences and Office of Polar Programs to manage their data free of charge. Data managers work closely with investigators to satisfy their data sharing requirements and to develop comprehensive Data Management Plans, as well as to ensure that their data will be well described with extensive metadata creation. Additionally, BCO-DMO offers tools to find and reuse these high-quality data and metadata packages, and services such as DOI generation for publication and attribution. These resources are free for all to discover, access, and utilize. As a repository embedded in our research community, BCO-DMO is well positioned to offer knowledge and expertise from both domain trained data managers and the scientific community at large. BCO-DMO is currently home to more than 9000 datasets and 900 projects, all of which are or will be submitted for archive at the National Centers for Environmental Information (NCEI). Our data holdings continue to grow, and encompass a wide range of oceanographic research areas, including biological, chemical, physical, and ecological. These data represent cruises and experiments from around the world, and are managed using community best practices, standards, and technologies to ensure accuracy and promote re-use. BCO-DMO is a repository and tool for investigators, offering both ocean science data and resources for data dissemination and publication.
    Description: NSF #1435578
    Keywords: Data management ; Data tools ; Data sharing ; Data re-use ; Data citation ; Data repository
    Repository Name: Woods Hole Open Access Server
    Type: Presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...