ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 66 (2015): 434-450, doi:10.1016/j.marpetgeo.2015.02.033.
    Description: Natural hydrate-bearing sediments from the Nankai Trough, offshore Japan, were studied using the Pressure Core Characterization Tools (PCCTs) to obtain geomechanical, hydrological, electrical, and biological properties under in situ pressure, temperature, and restored effective stress conditions. Measurement results, combined with index-property data and analytical physics-based models, provide unique insight into hydrate-bearing sediments in situ. Tested cores contain some silty-sands, but are predominantly sandy- and clayey-silts. Hydrate saturations Sh range from 0.15 to 0.74, with significant concentrations in the silty-sands. Wave velocity and flexible-wall permeameter measurements on never-depressurized pressure-core sediments suggest hydrates in the coarser-grained zones, the silty-sands where Sh exceeds 0.4, contribute to soil-skeletal stability and are load-bearing. In the sandy- and clayey-silts, where Sh 〈 0.4, the state of effective stress and stress history are significant factors determining sediment stiffness. Controlled depressurization tests show that hydrate dissociation occurs too quickly to maintain thermodynamic equilibrium, and pressure–temperature conditions track the hydrate stability boundary in pure-water, rather than that in seawater, in spite of both the in situ pore water and the water used to maintain specimen pore pressure prior to dissociation being saline. Hydrate dissociation accompanied with fines migration caused up to 2.4% vertical strain contraction. The first-ever direct shear measurements on never-depressurized pressure-core specimens show hydrate-bearing sediments have higher sediment strength and peak friction angle than post-dissociation sediments, but the residual friction angle remains the same in both cases. Permeability measurements made before and after hydrate dissociation demonstrate that water permeability increases after dissociation, but the gain is limited by the transition from hydrate saturation before dissociation to gas saturation after dissociation. In a proof-of-concept study, sediment microbial communities were successfully extracted and stored under high-pressure, anoxic conditions. Depressurized samples of these extractions were incubated in air, where microbes exhibited temperature-dependent growth rates.
    Description: PCCTs were developed with funding to Georgia Tech from the DOE/Chevron Joint Industry Project (JIP), with additional funds from the Joint Oceanographic Institutions, Inc. The JIP also funded the Georgia Tech participation in Sapporo. USGS participation in Sapporo was funded through a technical assistance agreement with Chevron (TAA-12-2135/CW928359). Some USGS developments on the IPTC were funded under Interagency Agreement DE-FE0002911 with the U.S. Department of Energy, with additional support from the U.S. Geological Survey. Core acquisition and Japanese participation in this study was supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) to carry out Japan's Methane Hydrate R&D Program conducted by the Ministry of Economy, Trade and Industry (METI).
    Keywords: Methane hydrate ; Hydrate-bearing sediment ; Nankai Trough ; Physical properties ; Pressure core
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Organic Magnetic Resonance 31 (1993), S. 969-971 
    ISSN: 0749-1581
    Keywords: F-adamantanes ; 1-Halo-F-adamantanes ; Perfluoroadamantyl halides ; 19F NMR ; Adamantyl halides ; 1-Haloadamantanes ; Chemical shifts ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An ‘anomalous’ variation of β-fluorine chemical shifts with respect to the inductive effect in the 19F NMR of a series of 1-halo-F-adamantanes is reported. These fluorine chemical shifts are similar to the hydrogen chemical shift anomaly found in the corresponding hydrocarbon halides. Whereas the γ-hydrogen chemical shifts can be rationalized by the inductive effect, the γ-fluorine chemical shifts have the same ‘anomalous’ variation as found in the β-fluorine chemical shifts.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...